Step |
Hyp |
Ref |
Expression |
1 |
|
pstmval.1 |
|
2 |
1
|
pstmval |
|
3 |
2
|
3ad2ant1 |
|
4 |
3
|
oveqd |
|
5 |
1
|
fvexi |
|
6 |
5
|
ecelqsi |
|
7 |
6
|
3ad2ant2 |
|
8 |
5
|
ecelqsi |
|
9 |
8
|
3ad2ant3 |
|
10 |
|
rexeq |
|
11 |
10
|
abbidv |
|
12 |
11
|
unieqd |
|
13 |
|
rexeq |
|
14 |
13
|
rexbidv |
|
15 |
14
|
abbidv |
|
16 |
15
|
unieqd |
|
17 |
|
eqid |
|
18 |
|
ecexg |
|
19 |
5 18
|
ax-mp |
|
20 |
|
ecexg |
|
21 |
5 20
|
ax-mp |
|
22 |
19 21
|
ab2rexex |
|
23 |
22
|
uniex |
|
24 |
12 16 17 23
|
ovmpo |
|
25 |
7 9 24
|
syl2anc |
|
26 |
|
simpr3 |
|
27 |
|
simpl1 |
|
28 |
|
simpr1 |
|
29 |
|
metidss |
|
30 |
1 29
|
eqsstrid |
|
31 |
|
xpss |
|
32 |
30 31
|
sstrdi |
|
33 |
|
df-rel |
|
34 |
32 33
|
sylibr |
|
35 |
34
|
3ad2ant1 |
|
36 |
35
|
adantr |
|
37 |
|
relelec |
|
38 |
36 37
|
syl |
|
39 |
28 38
|
mpbid |
|
40 |
1
|
breqi |
|
41 |
39 40
|
sylib |
|
42 |
|
simpr2 |
|
43 |
|
relelec |
|
44 |
36 43
|
syl |
|
45 |
42 44
|
mpbid |
|
46 |
1
|
breqi |
|
47 |
45 46
|
sylib |
|
48 |
|
metideq |
|
49 |
27 41 47 48
|
syl12anc |
|
50 |
26 49
|
eqtr4d |
|
51 |
50
|
adantlr |
|
52 |
51
|
3anassrs |
|
53 |
|
oveq1 |
|
54 |
53
|
eqeq2d |
|
55 |
|
oveq2 |
|
56 |
55
|
eqeq2d |
|
57 |
54 56
|
cbvrex2vw |
|
58 |
57
|
biimpi |
|
59 |
58
|
adantl |
|
60 |
52 59
|
r19.29vva |
|
61 |
|
simpl1 |
|
62 |
|
simpl2 |
|
63 |
|
psmet0 |
|
64 |
61 62 63
|
syl2anc |
|
65 |
|
relelec |
|
66 |
61 34 65
|
3syl |
|
67 |
1
|
a1i |
|
68 |
67
|
breqd |
|
69 |
|
metidv |
|
70 |
61 62 62 69
|
syl12anc |
|
71 |
66 68 70
|
3bitrd |
|
72 |
64 71
|
mpbird |
|
73 |
|
simpl3 |
|
74 |
|
psmet0 |
|
75 |
61 73 74
|
syl2anc |
|
76 |
|
relelec |
|
77 |
61 34 76
|
3syl |
|
78 |
67
|
breqd |
|
79 |
|
metidv |
|
80 |
61 73 73 79
|
syl12anc |
|
81 |
77 78 80
|
3bitrd |
|
82 |
75 81
|
mpbird |
|
83 |
|
simpr |
|
84 |
|
rspceov |
|
85 |
72 82 83 84
|
syl3anc |
|
86 |
60 85
|
impbida |
|
87 |
86
|
abbidv |
|
88 |
|
df-sn |
|
89 |
87 88
|
eqtr4di |
|
90 |
89
|
unieqd |
|
91 |
|
ovex |
|
92 |
91
|
unisn |
|
93 |
90 92
|
eqtrdi |
|
94 |
4 25 93
|
3eqtrd |
|