Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
⊢ 𝐹 ∈ V |
2 |
|
ovex |
⊢ ( 𝑥 − 𝐴 ) ∈ V |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
2 3
|
breldm |
⊢ ( ( 𝑥 − 𝐴 ) 𝐹 𝑦 → ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ) |
5 |
|
npcan |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑥 − 𝐴 ) + 𝐴 ) = 𝑥 ) |
6 |
5
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝑥 − 𝐴 ) → ( 𝑤 + 𝐴 ) = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) |
9 |
8
|
rspceeqv |
⊢ ( ( ( 𝑥 − 𝐴 ) ∈ dom 𝐹 ∧ 𝑥 = ( ( 𝑥 − 𝐴 ) + 𝐴 ) ) → ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) |
10 |
4 7 9
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = ( 𝑤 + 𝐴 ) ↔ 𝑥 = ( 𝑤 + 𝐴 ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) ↔ ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) ) |
14 |
11 13
|
elab |
⊢ ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ↔ ∃ 𝑤 ∈ dom 𝐹 𝑥 = ( 𝑤 + 𝐴 ) ) |
15 |
10 14
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ) |
16 |
2 3
|
brelrn |
⊢ ( ( 𝑥 − 𝐴 ) 𝐹 𝑦 → 𝑦 ∈ ran 𝐹 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → 𝑦 ∈ ran 𝐹 ) |
18 |
15 17
|
jca |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) ) |
19 |
18
|
expl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) → ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) ) ) |
20 |
19
|
ssopab2dv |
⊢ ( 𝐴 ∈ ℂ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) } ) |
21 |
|
df-xp |
⊢ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∧ 𝑦 ∈ ran 𝐹 ) } |
22 |
20 21
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ℂ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ⊆ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ) |
23 |
1
|
dmex |
⊢ dom 𝐹 ∈ V |
24 |
23
|
abrexex |
⊢ { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } ∈ V |
25 |
1
|
rnex |
⊢ ran 𝐹 ∈ V |
26 |
24 25
|
xpex |
⊢ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ∈ V |
27 |
|
ssexg |
⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ⊆ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ∧ ( { 𝑧 ∣ ∃ 𝑤 ∈ dom 𝐹 𝑧 = ( 𝑤 + 𝐴 ) } × ran 𝐹 ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) |
28 |
22 26 27
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) |
29 |
|
breq |
⊢ ( 𝑧 = 𝐹 → ( ( 𝑥 − 𝑤 ) 𝑧 𝑦 ↔ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) ) |
30 |
29
|
anbi2d |
⊢ ( 𝑧 = 𝐹 → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝑧 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) ) ) |
31 |
30
|
opabbidv |
⊢ ( 𝑧 = 𝐹 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝑧 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) } ) |
32 |
|
oveq2 |
⊢ ( 𝑤 = 𝐴 → ( 𝑥 − 𝑤 ) = ( 𝑥 − 𝐴 ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 − 𝑤 ) 𝐹 𝑦 ↔ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) |
34 |
33
|
anbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) ) ) |
35 |
34
|
opabbidv |
⊢ ( 𝑤 = 𝐴 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝐹 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
36 |
|
df-shft |
⊢ shift = ( 𝑧 ∈ V , 𝑤 ∈ ℂ ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝑤 ) 𝑧 𝑦 ) } ) |
37 |
31 35 36
|
ovmpog |
⊢ ( ( 𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
38 |
1 37
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ∈ V ) → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |
39 |
28 38
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ ( 𝑥 − 𝐴 ) 𝐹 𝑦 ) } ) |