| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfadd.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfadd.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfadd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | smfadd.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | smfadd.d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐷  ∈  ℝ ) | 
						
							| 6 |  | smfadd.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smfadd.n | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  ↦  𝐷 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 9 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  →  𝑥  ∈  𝐴 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 11 | 1 10 | ssdf | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐶 )  ⊆  𝐴 ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 13 | 1 12 4 | dmmptdf | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 15 |  | eqid | ⊢ dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 16 | 2 6 15 | smfdmss | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ∪  𝑆 ) | 
						
							| 17 | 14 16 | eqsstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  𝑆 ) | 
						
							| 18 | 11 17 | sstrd | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐶 )  ⊆  ∪  𝑆 ) | 
						
							| 19 | 10 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 20 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  →  𝑥  ∈  𝐶 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝑥  ∈  𝐶 ) | 
						
							| 22 | 21 5 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 23 | 19 22 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  ( 𝐵  +  𝐷 )  ∈  ℝ ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  ( 𝐵  +  𝐷 ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  ( 𝐵  +  𝐷 ) ) | 
						
							| 25 | 1 23 24 | fmptdf | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  ( 𝐵  +  𝐷 ) ) : ( 𝐴  ∩  𝐶 ) ⟶ ℝ ) | 
						
							| 26 | 25 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  ( 𝐵  +  𝐷 )  ∈  ℝ ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  ∈  ℝ | 
						
							| 28 | 1 27 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  ℝ ) | 
						
							| 29 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 30 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐴  ∈  𝑉 ) | 
						
							| 31 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 32 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑥  ∈  𝐶 )  →  𝐷  ∈  ℝ ) | 
						
							| 33 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 34 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑥  ∈  𝐶  ↦  𝐷 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑟  =  𝑞  →  ( 𝑝  +  𝑟 )  =  ( 𝑝  +  𝑞 ) ) | 
						
							| 37 | 36 | breq1d | ⊢ ( 𝑟  =  𝑞  →  ( ( 𝑝  +  𝑟 )  <  𝑎  ↔  ( 𝑝  +  𝑞 )  <  𝑎 ) ) | 
						
							| 38 | 37 | cbvrabv | ⊢ { 𝑟  ∈  ℚ  ∣  ( 𝑝  +  𝑟 )  <  𝑎 }  =  { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑎 } | 
						
							| 39 | 38 | mpteq2i | ⊢ ( 𝑝  ∈  ℚ  ↦  { 𝑟  ∈  ℚ  ∣  ( 𝑝  +  𝑟 )  <  𝑎 } )  =  ( 𝑝  ∈  ℚ  ↦  { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑎 } ) | 
						
							| 40 | 28 29 30 31 32 33 34 35 39 | smfaddlem2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  +  𝐷 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 41 | 1 8 2 18 26 40 | issmfdmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  ( 𝐵  +  𝐷 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) |