| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfaddlem2.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfaddlem2.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfaddlem2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | smfaddlem2.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | smfaddlem2.d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐷  ∈  ℝ ) | 
						
							| 6 |  | smfaddlem2.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 |  | smfaddlem2.7 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  ↦  𝐷 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 8 |  | smfaddlem2.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 9 |  | smfaddlem2.k | ⊢ 𝐾  =  ( 𝑝  ∈  ℚ  ↦  { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑅 } ) | 
						
							| 10 | 1 4 5 8 9 | smfaddlem1 | ⊢ ( 𝜑  →  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  +  𝐷 )  <  𝑅 }  =  ∪  𝑝  ∈  ℚ ∪  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  <  𝑝  ∧  𝐷  <  𝑞 ) } ) | 
						
							| 11 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  →  𝑥  ∈  𝐴 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 13 | 1 12 | ssdf | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐶 )  ⊆  𝐴 ) | 
						
							| 14 | 3 13 | ssexd | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐶 )  ∈  V ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) )  =  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 16 | 2 14 15 | subsalsal | ⊢ ( 𝜑  →  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) )  ∈  SAlg ) | 
						
							| 17 |  | qct | ⊢ ℚ  ≼  ω | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ℚ  ≼  ω ) | 
						
							| 19 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) )  ∈  SAlg ) | 
						
							| 20 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ℚ  ∈  V ) | 
						
							| 22 | 9 | a1i | ⊢ ( 𝜑  →  𝐾  =  ( 𝑝  ∈  ℚ  ↦  { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑅 } ) ) | 
						
							| 23 | 20 | rabex | ⊢ { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑅 }  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑅 }  ∈  V ) | 
						
							| 25 | 22 24 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ( 𝐾 ‘ 𝑝 )  =  { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑅 } ) | 
						
							| 26 |  | ssrab2 | ⊢ { 𝑞  ∈  ℚ  ∣  ( 𝑝  +  𝑞 )  <  𝑅 }  ⊆  ℚ | 
						
							| 27 | 25 26 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ( 𝐾 ‘ 𝑝 )  ⊆  ℚ ) | 
						
							| 28 |  | ssdomg | ⊢ ( ℚ  ∈  V  →  ( ( 𝐾 ‘ 𝑝 )  ⊆  ℚ  →  ( 𝐾 ‘ 𝑝 )  ≼  ℚ ) ) | 
						
							| 29 | 21 27 28 | sylc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ( 𝐾 ‘ 𝑝 )  ≼  ℚ ) | 
						
							| 30 | 17 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ℚ  ≼  ω ) | 
						
							| 31 |  | domtr | ⊢ ( ( ( 𝐾 ‘ 𝑝 )  ≼  ℚ  ∧  ℚ  ≼  ω )  →  ( 𝐾 ‘ 𝑝 )  ≼  ω ) | 
						
							| 32 | 29 30 31 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ( 𝐾 ‘ 𝑝 )  ≼  ω ) | 
						
							| 33 |  | inrab | ⊢ ( { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  𝐵  <  𝑝 }  ∩  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  𝐷  <  𝑞 } )  =  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  <  𝑝  ∧  𝐷  <  𝑞 ) } | 
						
							| 34 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) )  ∈  SAlg ) | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑥 𝑝  ∈  ℚ | 
						
							| 36 | 1 35 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑝  ∈  ℚ ) | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑥 𝑞  ∈  ( 𝐾 ‘ 𝑝 ) | 
						
							| 38 | 36 37 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) ) | 
						
							| 39 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 40 | 12 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 41 | 40 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 42 | 2 6 13 | sssmfmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 44 |  | qre | ⊢ ( 𝑝  ∈  ℚ  →  𝑝  ∈  ℝ ) | 
						
							| 45 | 44 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  𝑝  ∈  ℝ ) | 
						
							| 46 | 38 39 41 43 45 | smfpimltmpt | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  𝐵  <  𝑝 }  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 47 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  →  𝑥  ∈  𝐶 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝑥  ∈  𝐶 ) | 
						
							| 49 | 48 5 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 50 | 49 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  ∧  𝑥  ∈  ( 𝐴  ∩  𝐶 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 51 | 1 48 | ssdf | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐶 )  ⊆  𝐶 ) | 
						
							| 52 | 2 7 51 | sssmfmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  𝐷 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  ( 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ↦  𝐷 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 54 | 44 | ssriv | ⊢ ℚ  ⊆  ℝ | 
						
							| 55 | 27 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  𝑞  ∈  ℚ ) | 
						
							| 56 | 54 55 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  𝑞  ∈  ℝ ) | 
						
							| 57 | 38 39 50 53 56 | smfpimltmpt | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  𝐷  <  𝑞 }  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 58 | 34 46 57 | salincld | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  ( { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  𝐵  <  𝑝 }  ∩  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  𝐷  <  𝑞 } )  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 59 | 33 58 | eqeltrrid | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℚ )  ∧  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) )  →  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  <  𝑝  ∧  𝐷  <  𝑞 ) }  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 60 | 19 32 59 | saliuncl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ℚ )  →  ∪  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  <  𝑝  ∧  𝐷  <  𝑞 ) }  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 61 | 16 18 60 | saliuncl | ⊢ ( 𝜑  →  ∪  𝑝  ∈  ℚ ∪  𝑞  ∈  ( 𝐾 ‘ 𝑝 ) { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  <  𝑝  ∧  𝐷  <  𝑞 ) }  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) | 
						
							| 62 | 10 61 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  ( 𝐴  ∩  𝐶 )  ∣  ( 𝐵  +  𝐷 )  <  𝑅 }  ∈  ( 𝑆  ↾t  ( 𝐴  ∩  𝐶 ) ) ) |