Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfaddlem2.x | |
|
smfaddlem2.s | |
||
smfaddlem2.a | |
||
smfaddlem2.b | |
||
smfaddlem2.d | |
||
smfaddlem2.m | |
||
smfaddlem2.7 | |
||
smfaddlem2.r | |
||
smfaddlem2.k | |
||
Assertion | smfaddlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfaddlem2.x | |
|
2 | smfaddlem2.s | |
|
3 | smfaddlem2.a | |
|
4 | smfaddlem2.b | |
|
5 | smfaddlem2.d | |
|
6 | smfaddlem2.m | |
|
7 | smfaddlem2.7 | |
|
8 | smfaddlem2.r | |
|
9 | smfaddlem2.k | |
|
10 | 1 4 5 8 9 | smfaddlem1 | |
11 | elinel1 | |
|
12 | 11 | adantl | |
13 | 1 12 | ssdf | |
14 | 3 13 | ssexd | |
15 | eqid | |
|
16 | 2 14 15 | subsalsal | |
17 | qct | |
|
18 | 17 | a1i | |
19 | 16 | adantr | |
20 | qex | |
|
21 | 20 | a1i | |
22 | 9 | a1i | |
23 | 20 | rabex | |
24 | 23 | a1i | |
25 | 22 24 | fvmpt2d | |
26 | ssrab2 | |
|
27 | 25 26 | eqsstrdi | |
28 | ssdomg | |
|
29 | 21 27 28 | sylc | |
30 | 17 | a1i | |
31 | domtr | |
|
32 | 29 30 31 | syl2anc | |
33 | inrab | |
|
34 | 16 | ad2antrr | |
35 | nfv | |
|
36 | 1 35 | nfan | |
37 | nfv | |
|
38 | 36 37 | nfan | |
39 | 2 | ad2antrr | |
40 | 12 4 | syldan | |
41 | 40 | ad4ant14 | |
42 | 2 6 13 | sssmfmpt | |
43 | 42 | ad2antrr | |
44 | qre | |
|
45 | 44 | ad2antlr | |
46 | 38 39 41 43 45 | smfpimltmpt | |
47 | elinel2 | |
|
48 | 47 | adantl | |
49 | 48 5 | syldan | |
50 | 49 | ad4ant14 | |
51 | 1 48 | ssdf | |
52 | 2 7 51 | sssmfmpt | |
53 | 52 | ad2antrr | |
54 | 44 | ssriv | |
55 | 27 | sselda | |
56 | 54 55 | sselid | |
57 | 38 39 50 53 56 | smfpimltmpt | |
58 | 34 46 57 | salincld | |
59 | 33 58 | eqeltrrid | |
60 | 19 32 59 | saliuncl | |
61 | 16 18 60 | saliuncl | |
62 | 10 61 | eqeltrd | |