| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfaddlem2.x |  |-  F/ x ph | 
						
							| 2 |  | smfaddlem2.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfaddlem2.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | smfaddlem2.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 5 |  | smfaddlem2.d |  |-  ( ( ph /\ x e. C ) -> D e. RR ) | 
						
							| 6 |  | smfaddlem2.m |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 7 |  | smfaddlem2.7 |  |-  ( ph -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) | 
						
							| 8 |  | smfaddlem2.r |  |-  ( ph -> R e. RR ) | 
						
							| 9 |  | smfaddlem2.k |  |-  K = ( p e. QQ |-> { q e. QQ | ( p + q ) < R } ) | 
						
							| 10 | 1 4 5 8 9 | smfaddlem1 |  |-  ( ph -> { x e. ( A i^i C ) | ( B + D ) < R } = U_ p e. QQ U_ q e. ( K ` p ) { x e. ( A i^i C ) | ( B < p /\ D < q ) } ) | 
						
							| 11 |  | elinel1 |  |-  ( x e. ( A i^i C ) -> x e. A ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> x e. A ) | 
						
							| 13 | 1 12 | ssdf |  |-  ( ph -> ( A i^i C ) C_ A ) | 
						
							| 14 | 3 13 | ssexd |  |-  ( ph -> ( A i^i C ) e. _V ) | 
						
							| 15 |  | eqid |  |-  ( S |`t ( A i^i C ) ) = ( S |`t ( A i^i C ) ) | 
						
							| 16 | 2 14 15 | subsalsal |  |-  ( ph -> ( S |`t ( A i^i C ) ) e. SAlg ) | 
						
							| 17 |  | qct |  |-  QQ ~<_ _om | 
						
							| 18 | 17 | a1i |  |-  ( ph -> QQ ~<_ _om ) | 
						
							| 19 | 16 | adantr |  |-  ( ( ph /\ p e. QQ ) -> ( S |`t ( A i^i C ) ) e. SAlg ) | 
						
							| 20 |  | qex |  |-  QQ e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ p e. QQ ) -> QQ e. _V ) | 
						
							| 22 | 9 | a1i |  |-  ( ph -> K = ( p e. QQ |-> { q e. QQ | ( p + q ) < R } ) ) | 
						
							| 23 | 20 | rabex |  |-  { q e. QQ | ( p + q ) < R } e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ( ph /\ p e. QQ ) -> { q e. QQ | ( p + q ) < R } e. _V ) | 
						
							| 25 | 22 24 | fvmpt2d |  |-  ( ( ph /\ p e. QQ ) -> ( K ` p ) = { q e. QQ | ( p + q ) < R } ) | 
						
							| 26 |  | ssrab2 |  |-  { q e. QQ | ( p + q ) < R } C_ QQ | 
						
							| 27 | 25 26 | eqsstrdi |  |-  ( ( ph /\ p e. QQ ) -> ( K ` p ) C_ QQ ) | 
						
							| 28 |  | ssdomg |  |-  ( QQ e. _V -> ( ( K ` p ) C_ QQ -> ( K ` p ) ~<_ QQ ) ) | 
						
							| 29 | 21 27 28 | sylc |  |-  ( ( ph /\ p e. QQ ) -> ( K ` p ) ~<_ QQ ) | 
						
							| 30 | 17 | a1i |  |-  ( ( ph /\ p e. QQ ) -> QQ ~<_ _om ) | 
						
							| 31 |  | domtr |  |-  ( ( ( K ` p ) ~<_ QQ /\ QQ ~<_ _om ) -> ( K ` p ) ~<_ _om ) | 
						
							| 32 | 29 30 31 | syl2anc |  |-  ( ( ph /\ p e. QQ ) -> ( K ` p ) ~<_ _om ) | 
						
							| 33 |  | inrab |  |-  ( { x e. ( A i^i C ) | B < p } i^i { x e. ( A i^i C ) | D < q } ) = { x e. ( A i^i C ) | ( B < p /\ D < q ) } | 
						
							| 34 | 16 | ad2antrr |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( S |`t ( A i^i C ) ) e. SAlg ) | 
						
							| 35 |  | nfv |  |-  F/ x p e. QQ | 
						
							| 36 | 1 35 | nfan |  |-  F/ x ( ph /\ p e. QQ ) | 
						
							| 37 |  | nfv |  |-  F/ x q e. ( K ` p ) | 
						
							| 38 | 36 37 | nfan |  |-  F/ x ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) | 
						
							| 39 | 2 | ad2antrr |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> S e. SAlg ) | 
						
							| 40 | 12 4 | syldan |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> B e. RR ) | 
						
							| 41 | 40 | ad4ant14 |  |-  ( ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) /\ x e. ( A i^i C ) ) -> B e. RR ) | 
						
							| 42 | 2 6 13 | sssmfmpt |  |-  ( ph -> ( x e. ( A i^i C ) |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( x e. ( A i^i C ) |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 44 |  | qre |  |-  ( p e. QQ -> p e. RR ) | 
						
							| 45 | 44 | ad2antlr |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> p e. RR ) | 
						
							| 46 | 38 39 41 43 45 | smfpimltmpt |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> { x e. ( A i^i C ) | B < p } e. ( S |`t ( A i^i C ) ) ) | 
						
							| 47 |  | elinel2 |  |-  ( x e. ( A i^i C ) -> x e. C ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> x e. C ) | 
						
							| 49 | 48 5 | syldan |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> D e. RR ) | 
						
							| 50 | 49 | ad4ant14 |  |-  ( ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) /\ x e. ( A i^i C ) ) -> D e. RR ) | 
						
							| 51 | 1 48 | ssdf |  |-  ( ph -> ( A i^i C ) C_ C ) | 
						
							| 52 | 2 7 51 | sssmfmpt |  |-  ( ph -> ( x e. ( A i^i C ) |-> D ) e. ( SMblFn ` S ) ) | 
						
							| 53 | 52 | ad2antrr |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( x e. ( A i^i C ) |-> D ) e. ( SMblFn ` S ) ) | 
						
							| 54 | 44 | ssriv |  |-  QQ C_ RR | 
						
							| 55 | 27 | sselda |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> q e. QQ ) | 
						
							| 56 | 54 55 | sselid |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> q e. RR ) | 
						
							| 57 | 38 39 50 53 56 | smfpimltmpt |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> { x e. ( A i^i C ) | D < q } e. ( S |`t ( A i^i C ) ) ) | 
						
							| 58 | 34 46 57 | salincld |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( { x e. ( A i^i C ) | B < p } i^i { x e. ( A i^i C ) | D < q } ) e. ( S |`t ( A i^i C ) ) ) | 
						
							| 59 | 33 58 | eqeltrrid |  |-  ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> { x e. ( A i^i C ) | ( B < p /\ D < q ) } e. ( S |`t ( A i^i C ) ) ) | 
						
							| 60 | 19 32 59 | saliuncl |  |-  ( ( ph /\ p e. QQ ) -> U_ q e. ( K ` p ) { x e. ( A i^i C ) | ( B < p /\ D < q ) } e. ( S |`t ( A i^i C ) ) ) | 
						
							| 61 | 16 18 60 | saliuncl |  |-  ( ph -> U_ p e. QQ U_ q e. ( K ` p ) { x e. ( A i^i C ) | ( B < p /\ D < q ) } e. ( S |`t ( A i^i C ) ) ) | 
						
							| 62 | 10 61 | eqeltrd |  |-  ( ph -> { x e. ( A i^i C ) | ( B + D ) < R } e. ( S |`t ( A i^i C ) ) ) |