Step |
Hyp |
Ref |
Expression |
1 |
|
smfaddlem2.x |
|- F/ x ph |
2 |
|
smfaddlem2.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfaddlem2.a |
|- ( ph -> A e. V ) |
4 |
|
smfaddlem2.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
5 |
|
smfaddlem2.d |
|- ( ( ph /\ x e. C ) -> D e. RR ) |
6 |
|
smfaddlem2.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
7 |
|
smfaddlem2.7 |
|- ( ph -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) |
8 |
|
smfaddlem2.r |
|- ( ph -> R e. RR ) |
9 |
|
smfaddlem2.k |
|- K = ( p e. QQ |-> { q e. QQ | ( p + q ) < R } ) |
10 |
1 4 5 8 9
|
smfaddlem1 |
|- ( ph -> { x e. ( A i^i C ) | ( B + D ) < R } = U_ p e. QQ U_ q e. ( K ` p ) { x e. ( A i^i C ) | ( B < p /\ D < q ) } ) |
11 |
|
elinel1 |
|- ( x e. ( A i^i C ) -> x e. A ) |
12 |
11
|
adantl |
|- ( ( ph /\ x e. ( A i^i C ) ) -> x e. A ) |
13 |
1 12
|
ssdf |
|- ( ph -> ( A i^i C ) C_ A ) |
14 |
3 13
|
ssexd |
|- ( ph -> ( A i^i C ) e. _V ) |
15 |
|
eqid |
|- ( S |`t ( A i^i C ) ) = ( S |`t ( A i^i C ) ) |
16 |
2 14 15
|
subsalsal |
|- ( ph -> ( S |`t ( A i^i C ) ) e. SAlg ) |
17 |
|
qct |
|- QQ ~<_ _om |
18 |
17
|
a1i |
|- ( ph -> QQ ~<_ _om ) |
19 |
16
|
adantr |
|- ( ( ph /\ p e. QQ ) -> ( S |`t ( A i^i C ) ) e. SAlg ) |
20 |
|
qex |
|- QQ e. _V |
21 |
20
|
a1i |
|- ( ( ph /\ p e. QQ ) -> QQ e. _V ) |
22 |
9
|
a1i |
|- ( ph -> K = ( p e. QQ |-> { q e. QQ | ( p + q ) < R } ) ) |
23 |
20
|
rabex |
|- { q e. QQ | ( p + q ) < R } e. _V |
24 |
23
|
a1i |
|- ( ( ph /\ p e. QQ ) -> { q e. QQ | ( p + q ) < R } e. _V ) |
25 |
22 24
|
fvmpt2d |
|- ( ( ph /\ p e. QQ ) -> ( K ` p ) = { q e. QQ | ( p + q ) < R } ) |
26 |
|
ssrab2 |
|- { q e. QQ | ( p + q ) < R } C_ QQ |
27 |
25 26
|
eqsstrdi |
|- ( ( ph /\ p e. QQ ) -> ( K ` p ) C_ QQ ) |
28 |
|
ssdomg |
|- ( QQ e. _V -> ( ( K ` p ) C_ QQ -> ( K ` p ) ~<_ QQ ) ) |
29 |
21 27 28
|
sylc |
|- ( ( ph /\ p e. QQ ) -> ( K ` p ) ~<_ QQ ) |
30 |
17
|
a1i |
|- ( ( ph /\ p e. QQ ) -> QQ ~<_ _om ) |
31 |
|
domtr |
|- ( ( ( K ` p ) ~<_ QQ /\ QQ ~<_ _om ) -> ( K ` p ) ~<_ _om ) |
32 |
29 30 31
|
syl2anc |
|- ( ( ph /\ p e. QQ ) -> ( K ` p ) ~<_ _om ) |
33 |
|
inrab |
|- ( { x e. ( A i^i C ) | B < p } i^i { x e. ( A i^i C ) | D < q } ) = { x e. ( A i^i C ) | ( B < p /\ D < q ) } |
34 |
16
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( S |`t ( A i^i C ) ) e. SAlg ) |
35 |
|
nfv |
|- F/ x p e. QQ |
36 |
1 35
|
nfan |
|- F/ x ( ph /\ p e. QQ ) |
37 |
|
nfv |
|- F/ x q e. ( K ` p ) |
38 |
36 37
|
nfan |
|- F/ x ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) |
39 |
2
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> S e. SAlg ) |
40 |
12 4
|
syldan |
|- ( ( ph /\ x e. ( A i^i C ) ) -> B e. RR ) |
41 |
40
|
ad4ant14 |
|- ( ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) /\ x e. ( A i^i C ) ) -> B e. RR ) |
42 |
2 6 13
|
sssmfmpt |
|- ( ph -> ( x e. ( A i^i C ) |-> B ) e. ( SMblFn ` S ) ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( x e. ( A i^i C ) |-> B ) e. ( SMblFn ` S ) ) |
44 |
|
qre |
|- ( p e. QQ -> p e. RR ) |
45 |
44
|
ad2antlr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> p e. RR ) |
46 |
38 39 41 43 45
|
smfpimltmpt |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> { x e. ( A i^i C ) | B < p } e. ( S |`t ( A i^i C ) ) ) |
47 |
|
elinel2 |
|- ( x e. ( A i^i C ) -> x e. C ) |
48 |
47
|
adantl |
|- ( ( ph /\ x e. ( A i^i C ) ) -> x e. C ) |
49 |
48 5
|
syldan |
|- ( ( ph /\ x e. ( A i^i C ) ) -> D e. RR ) |
50 |
49
|
ad4ant14 |
|- ( ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) /\ x e. ( A i^i C ) ) -> D e. RR ) |
51 |
1 48
|
ssdf |
|- ( ph -> ( A i^i C ) C_ C ) |
52 |
2 7 51
|
sssmfmpt |
|- ( ph -> ( x e. ( A i^i C ) |-> D ) e. ( SMblFn ` S ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( x e. ( A i^i C ) |-> D ) e. ( SMblFn ` S ) ) |
54 |
44
|
ssriv |
|- QQ C_ RR |
55 |
27
|
sselda |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> q e. QQ ) |
56 |
54 55
|
sseldi |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> q e. RR ) |
57 |
38 39 50 53 56
|
smfpimltmpt |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> { x e. ( A i^i C ) | D < q } e. ( S |`t ( A i^i C ) ) ) |
58 |
34 46 57
|
salincld |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> ( { x e. ( A i^i C ) | B < p } i^i { x e. ( A i^i C ) | D < q } ) e. ( S |`t ( A i^i C ) ) ) |
59 |
33 58
|
eqeltrrid |
|- ( ( ( ph /\ p e. QQ ) /\ q e. ( K ` p ) ) -> { x e. ( A i^i C ) | ( B < p /\ D < q ) } e. ( S |`t ( A i^i C ) ) ) |
60 |
19 32 59
|
saliuncl |
|- ( ( ph /\ p e. QQ ) -> U_ q e. ( K ` p ) { x e. ( A i^i C ) | ( B < p /\ D < q ) } e. ( S |`t ( A i^i C ) ) ) |
61 |
16 18 60
|
saliuncl |
|- ( ph -> U_ p e. QQ U_ q e. ( K ` p ) { x e. ( A i^i C ) | ( B < p /\ D < q ) } e. ( S |`t ( A i^i C ) ) ) |
62 |
10 61
|
eqeltrd |
|- ( ph -> { x e. ( A i^i C ) | ( B + D ) < R } e. ( S |`t ( A i^i C ) ) ) |