| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfadd.x |
|- F/ x ph |
| 2 |
|
smfadd.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfadd.a |
|- ( ph -> A e. V ) |
| 4 |
|
smfadd.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 5 |
|
smfadd.d |
|- ( ( ph /\ x e. C ) -> D e. RR ) |
| 6 |
|
smfadd.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 7 |
|
smfadd.n |
|- ( ph -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) |
| 8 |
|
nfv |
|- F/ a ph |
| 9 |
|
elinel1 |
|- ( x e. ( A i^i C ) -> x e. A ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ x e. ( A i^i C ) ) -> x e. A ) |
| 11 |
1 10
|
ssdf |
|- ( ph -> ( A i^i C ) C_ A ) |
| 12 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 13 |
1 12 4
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
| 14 |
13
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
| 15 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
| 16 |
2 6 15
|
smfdmss |
|- ( ph -> dom ( x e. A |-> B ) C_ U. S ) |
| 17 |
14 16
|
eqsstrd |
|- ( ph -> A C_ U. S ) |
| 18 |
11 17
|
sstrd |
|- ( ph -> ( A i^i C ) C_ U. S ) |
| 19 |
10 4
|
syldan |
|- ( ( ph /\ x e. ( A i^i C ) ) -> B e. RR ) |
| 20 |
|
elinel2 |
|- ( x e. ( A i^i C ) -> x e. C ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ x e. ( A i^i C ) ) -> x e. C ) |
| 22 |
21 5
|
syldan |
|- ( ( ph /\ x e. ( A i^i C ) ) -> D e. RR ) |
| 23 |
19 22
|
readdcld |
|- ( ( ph /\ x e. ( A i^i C ) ) -> ( B + D ) e. RR ) |
| 24 |
|
eqid |
|- ( x e. ( A i^i C ) |-> ( B + D ) ) = ( x e. ( A i^i C ) |-> ( B + D ) ) |
| 25 |
1 23 24
|
fmptdf |
|- ( ph -> ( x e. ( A i^i C ) |-> ( B + D ) ) : ( A i^i C ) --> RR ) |
| 26 |
25
|
fvmptelcdm |
|- ( ( ph /\ x e. ( A i^i C ) ) -> ( B + D ) e. RR ) |
| 27 |
|
nfv |
|- F/ x a e. RR |
| 28 |
1 27
|
nfan |
|- F/ x ( ph /\ a e. RR ) |
| 29 |
2
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
| 30 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> A e. V ) |
| 31 |
4
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR ) |
| 32 |
5
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ x e. C ) -> D e. RR ) |
| 33 |
6
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 34 |
7
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) |
| 35 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
| 36 |
|
oveq2 |
|- ( r = q -> ( p + r ) = ( p + q ) ) |
| 37 |
36
|
breq1d |
|- ( r = q -> ( ( p + r ) < a <-> ( p + q ) < a ) ) |
| 38 |
37
|
cbvrabv |
|- { r e. QQ | ( p + r ) < a } = { q e. QQ | ( p + q ) < a } |
| 39 |
38
|
mpteq2i |
|- ( p e. QQ |-> { r e. QQ | ( p + r ) < a } ) = ( p e. QQ |-> { q e. QQ | ( p + q ) < a } ) |
| 40 |
28 29 30 31 32 33 34 35 39
|
smfaddlem2 |
|- ( ( ph /\ a e. RR ) -> { x e. ( A i^i C ) | ( B + D ) < a } e. ( S |`t ( A i^i C ) ) ) |
| 41 |
1 8 2 18 26 40
|
issmfdmpt |
|- ( ph -> ( x e. ( A i^i C ) |-> ( B + D ) ) e. ( SMblFn ` S ) ) |