| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfadd.x |  |-  F/ x ph | 
						
							| 2 |  | smfadd.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfadd.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | smfadd.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 5 |  | smfadd.d |  |-  ( ( ph /\ x e. C ) -> D e. RR ) | 
						
							| 6 |  | smfadd.m |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 7 |  | smfadd.n |  |-  ( ph -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) | 
						
							| 8 |  | nfv |  |-  F/ a ph | 
						
							| 9 |  | elinel1 |  |-  ( x e. ( A i^i C ) -> x e. A ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> x e. A ) | 
						
							| 11 | 1 10 | ssdf |  |-  ( ph -> ( A i^i C ) C_ A ) | 
						
							| 12 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 13 | 1 12 4 | dmmptdf |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ph -> A = dom ( x e. A |-> B ) ) | 
						
							| 15 |  | eqid |  |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B ) | 
						
							| 16 | 2 6 15 | smfdmss |  |-  ( ph -> dom ( x e. A |-> B ) C_ U. S ) | 
						
							| 17 | 14 16 | eqsstrd |  |-  ( ph -> A C_ U. S ) | 
						
							| 18 | 11 17 | sstrd |  |-  ( ph -> ( A i^i C ) C_ U. S ) | 
						
							| 19 | 10 4 | syldan |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> B e. RR ) | 
						
							| 20 |  | elinel2 |  |-  ( x e. ( A i^i C ) -> x e. C ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> x e. C ) | 
						
							| 22 | 21 5 | syldan |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> D e. RR ) | 
						
							| 23 | 19 22 | readdcld |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> ( B + D ) e. RR ) | 
						
							| 24 |  | eqid |  |-  ( x e. ( A i^i C ) |-> ( B + D ) ) = ( x e. ( A i^i C ) |-> ( B + D ) ) | 
						
							| 25 | 1 23 24 | fmptdf |  |-  ( ph -> ( x e. ( A i^i C ) |-> ( B + D ) ) : ( A i^i C ) --> RR ) | 
						
							| 26 | 25 | fvmptelcdm |  |-  ( ( ph /\ x e. ( A i^i C ) ) -> ( B + D ) e. RR ) | 
						
							| 27 |  | nfv |  |-  F/ x a e. RR | 
						
							| 28 | 1 27 | nfan |  |-  F/ x ( ph /\ a e. RR ) | 
						
							| 29 | 2 | adantr |  |-  ( ( ph /\ a e. RR ) -> S e. SAlg ) | 
						
							| 30 | 3 | adantr |  |-  ( ( ph /\ a e. RR ) -> A e. V ) | 
						
							| 31 | 4 | adantlr |  |-  ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR ) | 
						
							| 32 | 5 | adantlr |  |-  ( ( ( ph /\ a e. RR ) /\ x e. C ) -> D e. RR ) | 
						
							| 33 | 6 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 34 | 7 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( x e. C |-> D ) e. ( SMblFn ` S ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ph /\ a e. RR ) -> a e. RR ) | 
						
							| 36 |  | oveq2 |  |-  ( r = q -> ( p + r ) = ( p + q ) ) | 
						
							| 37 | 36 | breq1d |  |-  ( r = q -> ( ( p + r ) < a <-> ( p + q ) < a ) ) | 
						
							| 38 | 37 | cbvrabv |  |-  { r e. QQ | ( p + r ) < a } = { q e. QQ | ( p + q ) < a } | 
						
							| 39 | 38 | mpteq2i |  |-  ( p e. QQ |-> { r e. QQ | ( p + r ) < a } ) = ( p e. QQ |-> { q e. QQ | ( p + q ) < a } ) | 
						
							| 40 | 28 29 30 31 32 33 34 35 39 | smfaddlem2 |  |-  ( ( ph /\ a e. RR ) -> { x e. ( A i^i C ) | ( B + D ) < a } e. ( S |`t ( A i^i C ) ) ) | 
						
							| 41 | 1 8 2 18 26 40 | issmfdmpt |  |-  ( ph -> ( x e. ( A i^i C ) |-> ( B + D ) ) e. ( SMblFn ` S ) ) |