| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decsmflem.x |  |-  F/ x ph | 
						
							| 2 |  | decsmflem.y |  |-  F/ y ph | 
						
							| 3 |  | decsmflem.a |  |-  ( ph -> A C_ RR ) | 
						
							| 4 |  | decsmflem.f |  |-  ( ph -> F : A --> RR* ) | 
						
							| 5 |  | decsmflem.i |  |-  ( ph -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 6 |  | decsmflem.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 7 |  | decsmflem.b |  |-  B = ( SalGen ` J ) | 
						
							| 8 |  | decsmflem.r |  |-  ( ph -> R e. RR* ) | 
						
							| 9 |  | decsmflem.l |  |-  Y = { x e. A | R < ( F ` x ) } | 
						
							| 10 |  | decsmflem.c |  |-  C = sup ( Y , RR* , < ) | 
						
							| 11 |  | decsmflem.d |  |-  D = ( -oo (,) C ) | 
						
							| 12 |  | decsmflem.e |  |-  E = ( -oo (,] C ) | 
						
							| 13 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 14 | 13 | a1i |  |-  ( ( ph /\ C e. Y ) -> -oo e. RR* ) | 
						
							| 15 |  | ssrab2 |  |-  { x e. A | R < ( F ` x ) } C_ A | 
						
							| 16 | 9 15 | eqsstri |  |-  Y C_ A | 
						
							| 17 | 16 | a1i |  |-  ( ph -> Y C_ A ) | 
						
							| 18 | 17 3 | sstrd |  |-  ( ph -> Y C_ RR ) | 
						
							| 19 | 18 | sselda |  |-  ( ( ph /\ C e. Y ) -> C e. RR ) | 
						
							| 20 | 14 19 6 7 | iocborel |  |-  ( ( ph /\ C e. Y ) -> ( -oo (,] C ) e. B ) | 
						
							| 21 | 12 20 | eqeltrid |  |-  ( ( ph /\ C e. Y ) -> E e. B ) | 
						
							| 22 |  | nfrab1 |  |-  F/_ x { x e. A | R < ( F ` x ) } | 
						
							| 23 | 9 22 | nfcxfr |  |-  F/_ x Y | 
						
							| 24 |  | nfcv |  |-  F/_ x RR* | 
						
							| 25 |  | nfcv |  |-  F/_ x < | 
						
							| 26 | 23 24 25 | nfsup |  |-  F/_ x sup ( Y , RR* , < ) | 
						
							| 27 | 10 26 | nfcxfr |  |-  F/_ x C | 
						
							| 28 | 27 23 | nfel |  |-  F/ x C e. Y | 
						
							| 29 | 1 28 | nfan |  |-  F/ x ( ph /\ C e. Y ) | 
						
							| 30 | 3 | adantr |  |-  ( ( ph /\ C e. Y ) -> A C_ RR ) | 
						
							| 31 | 4 | adantr |  |-  ( ( ph /\ C e. Y ) -> F : A --> RR* ) | 
						
							| 32 | 5 | adantr |  |-  ( ( ph /\ C e. Y ) -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 33 | 8 | adantr |  |-  ( ( ph /\ C e. Y ) -> R e. RR* ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ C e. Y ) -> C e. Y ) | 
						
							| 35 | 29 30 31 32 33 9 10 34 12 | pimdecfgtioc |  |-  ( ( ph /\ C e. Y ) -> Y = ( E i^i A ) ) | 
						
							| 36 |  | ineq1 |  |-  ( b = E -> ( b i^i A ) = ( E i^i A ) ) | 
						
							| 37 | 36 | rspceeqv |  |-  ( ( E e. B /\ Y = ( E i^i A ) ) -> E. b e. B Y = ( b i^i A ) ) | 
						
							| 38 | 21 35 37 | syl2anc |  |-  ( ( ph /\ C e. Y ) -> E. b e. B Y = ( b i^i A ) ) | 
						
							| 39 | 6 7 | iooborel |  |-  ( -oo (,) C ) e. B | 
						
							| 40 | 11 39 | eqeltri |  |-  D e. B | 
						
							| 41 | 40 | a1i |  |-  ( ph -> D e. B ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ -. C e. Y ) -> D e. B ) | 
						
							| 43 | 28 | nfn |  |-  F/ x -. C e. Y | 
						
							| 44 | 1 43 | nfan |  |-  F/ x ( ph /\ -. C e. Y ) | 
						
							| 45 |  | nfv |  |-  F/ y -. C e. Y | 
						
							| 46 | 2 45 | nfan |  |-  F/ y ( ph /\ -. C e. Y ) | 
						
							| 47 | 3 | adantr |  |-  ( ( ph /\ -. C e. Y ) -> A C_ RR ) | 
						
							| 48 | 4 | adantr |  |-  ( ( ph /\ -. C e. Y ) -> F : A --> RR* ) | 
						
							| 49 | 5 | adantr |  |-  ( ( ph /\ -. C e. Y ) -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 50 | 8 | adantr |  |-  ( ( ph /\ -. C e. Y ) -> R e. RR* ) | 
						
							| 51 |  | simpr |  |-  ( ( ph /\ -. C e. Y ) -> -. C e. Y ) | 
						
							| 52 | 44 46 47 48 49 50 9 10 51 11 | pimdecfgtioo |  |-  ( ( ph /\ -. C e. Y ) -> Y = ( D i^i A ) ) | 
						
							| 53 |  | ineq1 |  |-  ( b = D -> ( b i^i A ) = ( D i^i A ) ) | 
						
							| 54 | 53 | rspceeqv |  |-  ( ( D e. B /\ Y = ( D i^i A ) ) -> E. b e. B Y = ( b i^i A ) ) | 
						
							| 55 | 42 52 54 | syl2anc |  |-  ( ( ph /\ -. C e. Y ) -> E. b e. B Y = ( b i^i A ) ) | 
						
							| 56 | 38 55 | pm2.61dan |  |-  ( ph -> E. b e. B Y = ( b i^i A ) ) |