| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decsmflem.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
decsmflem.y |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
decsmflem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 4 |
|
decsmflem.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 5 |
|
decsmflem.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 |
|
decsmflem.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 7 |
|
decsmflem.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
| 8 |
|
decsmflem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 9 |
|
decsmflem.l |
⊢ 𝑌 = { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
| 10 |
|
decsmflem.c |
⊢ 𝐶 = sup ( 𝑌 , ℝ* , < ) |
| 11 |
|
decsmflem.d |
⊢ 𝐷 = ( -∞ (,) 𝐶 ) |
| 12 |
|
decsmflem.e |
⊢ 𝐸 = ( -∞ (,] 𝐶 ) |
| 13 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → -∞ ∈ ℝ* ) |
| 15 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 |
| 16 |
9 15
|
eqsstri |
⊢ 𝑌 ⊆ 𝐴 |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐴 ) |
| 18 |
17 3
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
| 19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐶 ∈ ℝ ) |
| 20 |
14 19 6 7
|
iocborel |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → ( -∞ (,] 𝐶 ) ∈ 𝐵 ) |
| 21 |
12 20
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐸 ∈ 𝐵 ) |
| 22 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
| 23 |
9 22
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑌 |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ* |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 26 |
23 24 25
|
nfsup |
⊢ Ⅎ 𝑥 sup ( 𝑌 , ℝ* , < ) |
| 27 |
10 26
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐶 |
| 28 |
27 23
|
nfel |
⊢ Ⅎ 𝑥 𝐶 ∈ 𝑌 |
| 29 |
1 28
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) |
| 30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐴 ⊆ ℝ ) |
| 31 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝑅 ∈ ℝ* ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐶 ∈ 𝑌 ) |
| 35 |
29 30 31 32 33 9 10 34 12
|
pimdecfgtioc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝑌 = ( 𝐸 ∩ 𝐴 ) ) |
| 36 |
|
ineq1 |
⊢ ( 𝑏 = 𝐸 → ( 𝑏 ∩ 𝐴 ) = ( 𝐸 ∩ 𝐴 ) ) |
| 37 |
36
|
rspceeqv |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝑌 = ( 𝐸 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
| 38 |
21 35 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
| 39 |
6 7
|
iooborel |
⊢ ( -∞ (,) 𝐶 ) ∈ 𝐵 |
| 40 |
11 39
|
eqeltri |
⊢ 𝐷 ∈ 𝐵 |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ 𝐵 ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝐷 ∈ 𝐵 ) |
| 43 |
28
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝐶 ∈ 𝑌 |
| 44 |
1 43
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) |
| 45 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝐶 ∈ 𝑌 |
| 46 |
2 45
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) |
| 47 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝐴 ⊆ ℝ ) |
| 48 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 49 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 50 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝑅 ∈ ℝ* ) |
| 51 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → ¬ 𝐶 ∈ 𝑌 ) |
| 52 |
44 46 47 48 49 50 9 10 51 11
|
pimdecfgtioo |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝑌 = ( 𝐷 ∩ 𝐴 ) ) |
| 53 |
|
ineq1 |
⊢ ( 𝑏 = 𝐷 → ( 𝑏 ∩ 𝐴 ) = ( 𝐷 ∩ 𝐴 ) ) |
| 54 |
53
|
rspceeqv |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝑌 = ( 𝐷 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
| 55 |
42 52 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
| 56 |
38 55
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |