| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decsmflem.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | decsmflem.y | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 3 |  | decsmflem.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | decsmflem.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 5 |  | decsmflem.i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 6 |  | decsmflem.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 7 |  | decsmflem.b | ⊢ 𝐵  =  ( SalGen ‘ 𝐽 ) | 
						
							| 8 |  | decsmflem.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 9 |  | decsmflem.l | ⊢ 𝑌  =  { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 10 |  | decsmflem.c | ⊢ 𝐶  =  sup ( 𝑌 ,  ℝ* ,   <  ) | 
						
							| 11 |  | decsmflem.d | ⊢ 𝐷  =  ( -∞ (,) 𝐶 ) | 
						
							| 12 |  | decsmflem.e | ⊢ 𝐸  =  ( -∞ (,] 𝐶 ) | 
						
							| 13 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  -∞  ∈  ℝ* ) | 
						
							| 15 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) }  ⊆  𝐴 | 
						
							| 16 | 9 15 | eqsstri | ⊢ 𝑌  ⊆  𝐴 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  𝑌  ⊆  𝐴 ) | 
						
							| 18 | 17 3 | sstrd | ⊢ ( 𝜑  →  𝑌  ⊆  ℝ ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  𝐶  ∈  ℝ ) | 
						
							| 20 | 14 19 6 7 | iocborel | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  ( -∞ (,] 𝐶 )  ∈  𝐵 ) | 
						
							| 21 | 12 20 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  𝐸  ∈  𝐵 ) | 
						
							| 22 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 23 | 9 22 | nfcxfr | ⊢ Ⅎ 𝑥 𝑌 | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ* | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 26 | 23 24 25 | nfsup | ⊢ Ⅎ 𝑥 sup ( 𝑌 ,  ℝ* ,   <  ) | 
						
							| 27 | 10 26 | nfcxfr | ⊢ Ⅎ 𝑥 𝐶 | 
						
							| 28 | 27 23 | nfel | ⊢ Ⅎ 𝑥 𝐶  ∈  𝑌 | 
						
							| 29 | 1 28 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝐶  ∈  𝑌 ) | 
						
							| 30 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  𝐴  ⊆  ℝ ) | 
						
							| 31 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 32 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 33 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  𝑅  ∈  ℝ* ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  𝐶  ∈  𝑌 ) | 
						
							| 35 | 29 30 31 32 33 9 10 34 12 | pimdecfgtioc | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  𝑌  =  ( 𝐸  ∩  𝐴 ) ) | 
						
							| 36 |  | ineq1 | ⊢ ( 𝑏  =  𝐸  →  ( 𝑏  ∩  𝐴 )  =  ( 𝐸  ∩  𝐴 ) ) | 
						
							| 37 | 36 | rspceeqv | ⊢ ( ( 𝐸  ∈  𝐵  ∧  𝑌  =  ( 𝐸  ∩  𝐴 ) )  →  ∃ 𝑏  ∈  𝐵 𝑌  =  ( 𝑏  ∩  𝐴 ) ) | 
						
							| 38 | 21 35 37 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑌 )  →  ∃ 𝑏  ∈  𝐵 𝑌  =  ( 𝑏  ∩  𝐴 ) ) | 
						
							| 39 | 6 7 | iooborel | ⊢ ( -∞ (,) 𝐶 )  ∈  𝐵 | 
						
							| 40 | 11 39 | eqeltri | ⊢ 𝐷  ∈  𝐵 | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  𝐷  ∈  𝐵 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  𝐷  ∈  𝐵 ) | 
						
							| 43 | 28 | nfn | ⊢ Ⅎ 𝑥 ¬  𝐶  ∈  𝑌 | 
						
							| 44 | 1 43 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑦 ¬  𝐶  ∈  𝑌 | 
						
							| 46 | 2 45 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 ) | 
						
							| 47 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  𝐴  ⊆  ℝ ) | 
						
							| 48 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 49 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 50 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  𝑅  ∈  ℝ* ) | 
						
							| 51 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  ¬  𝐶  ∈  𝑌 ) | 
						
							| 52 | 44 46 47 48 49 50 9 10 51 11 | pimdecfgtioo | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  𝑌  =  ( 𝐷  ∩  𝐴 ) ) | 
						
							| 53 |  | ineq1 | ⊢ ( 𝑏  =  𝐷  →  ( 𝑏  ∩  𝐴 )  =  ( 𝐷  ∩  𝐴 ) ) | 
						
							| 54 | 53 | rspceeqv | ⊢ ( ( 𝐷  ∈  𝐵  ∧  𝑌  =  ( 𝐷  ∩  𝐴 ) )  →  ∃ 𝑏  ∈  𝐵 𝑌  =  ( 𝑏  ∩  𝐴 ) ) | 
						
							| 55 | 42 52 54 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐶  ∈  𝑌 )  →  ∃ 𝑏  ∈  𝐵 𝑌  =  ( 𝑏  ∩  𝐴 ) ) | 
						
							| 56 | 38 55 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑏  ∈  𝐵 𝑌  =  ( 𝑏  ∩  𝐴 ) ) |