Step |
Hyp |
Ref |
Expression |
1 |
|
decsmflem.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
decsmflem.y |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
decsmflem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
decsmflem.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
5 |
|
decsmflem.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
|
decsmflem.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
7 |
|
decsmflem.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
8 |
|
decsmflem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
9 |
|
decsmflem.l |
⊢ 𝑌 = { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
10 |
|
decsmflem.c |
⊢ 𝐶 = sup ( 𝑌 , ℝ* , < ) |
11 |
|
decsmflem.d |
⊢ 𝐷 = ( -∞ (,) 𝐶 ) |
12 |
|
decsmflem.e |
⊢ 𝐸 = ( -∞ (,] 𝐶 ) |
13 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → -∞ ∈ ℝ* ) |
15 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 |
16 |
9 15
|
eqsstri |
⊢ 𝑌 ⊆ 𝐴 |
17 |
16
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐴 ) |
18 |
17 3
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐶 ∈ ℝ ) |
20 |
14 19 6 7
|
iocborel |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → ( -∞ (,] 𝐶 ) ∈ 𝐵 ) |
21 |
12 20
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐸 ∈ 𝐵 ) |
22 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
23 |
9 22
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑌 |
24 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ* |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
26 |
23 24 25
|
nfsup |
⊢ Ⅎ 𝑥 sup ( 𝑌 , ℝ* , < ) |
27 |
10 26
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐶 |
28 |
27 23
|
nfel |
⊢ Ⅎ 𝑥 𝐶 ∈ 𝑌 |
29 |
1 28
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) |
30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐴 ⊆ ℝ ) |
31 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
33 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝑅 ∈ ℝ* ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝐶 ∈ 𝑌 ) |
35 |
29 30 31 32 33 9 10 34 12
|
pimdecfgtioc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → 𝑌 = ( 𝐸 ∩ 𝐴 ) ) |
36 |
|
ineq1 |
⊢ ( 𝑏 = 𝐸 → ( 𝑏 ∩ 𝐴 ) = ( 𝐸 ∩ 𝐴 ) ) |
37 |
36
|
rspceeqv |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝑌 = ( 𝐸 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
38 |
21 35 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑌 ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
39 |
6 7
|
iooborel |
⊢ ( -∞ (,) 𝐶 ) ∈ 𝐵 |
40 |
11 39
|
eqeltri |
⊢ 𝐷 ∈ 𝐵 |
41 |
40
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ 𝐵 ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝐷 ∈ 𝐵 ) |
43 |
28
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝐶 ∈ 𝑌 |
44 |
1 43
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) |
45 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝐶 ∈ 𝑌 |
46 |
2 45
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) |
47 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝐴 ⊆ ℝ ) |
48 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
49 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
50 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝑅 ∈ ℝ* ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → ¬ 𝐶 ∈ 𝑌 ) |
52 |
44 46 47 48 49 50 9 10 51 11
|
pimdecfgtioo |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → 𝑌 = ( 𝐷 ∩ 𝐴 ) ) |
53 |
|
ineq1 |
⊢ ( 𝑏 = 𝐷 → ( 𝑏 ∩ 𝐴 ) = ( 𝐷 ∩ 𝐴 ) ) |
54 |
53
|
rspceeqv |
⊢ ( ( 𝐷 ∈ 𝐵 ∧ 𝑌 = ( 𝐷 ∩ 𝐴 ) ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
55 |
42 52 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝑌 ) → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |
56 |
38 55
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐵 𝑌 = ( 𝑏 ∩ 𝐴 ) ) |