Metamath Proof Explorer


Theorem decsmflem

Description: A nonincreasing function is Borel measurable. Proposition 121D (c) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses decsmflem.x 𝑥 𝜑
decsmflem.y 𝑦 𝜑
decsmflem.a ( 𝜑𝐴 ⊆ ℝ )
decsmflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
decsmflem.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
decsmflem.j 𝐽 = ( topGen ‘ ran (,) )
decsmflem.b 𝐵 = ( SalGen ‘ 𝐽 )
decsmflem.r ( 𝜑𝑅 ∈ ℝ* )
decsmflem.l 𝑌 = { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) }
decsmflem.c 𝐶 = sup ( 𝑌 , ℝ* , < )
decsmflem.d 𝐷 = ( -∞ (,) 𝐶 )
decsmflem.e 𝐸 = ( -∞ (,] 𝐶 )
Assertion decsmflem ( 𝜑 → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )

Proof

Step Hyp Ref Expression
1 decsmflem.x 𝑥 𝜑
2 decsmflem.y 𝑦 𝜑
3 decsmflem.a ( 𝜑𝐴 ⊆ ℝ )
4 decsmflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
5 decsmflem.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
6 decsmflem.j 𝐽 = ( topGen ‘ ran (,) )
7 decsmflem.b 𝐵 = ( SalGen ‘ 𝐽 )
8 decsmflem.r ( 𝜑𝑅 ∈ ℝ* )
9 decsmflem.l 𝑌 = { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) }
10 decsmflem.c 𝐶 = sup ( 𝑌 , ℝ* , < )
11 decsmflem.d 𝐷 = ( -∞ (,) 𝐶 )
12 decsmflem.e 𝐸 = ( -∞ (,] 𝐶 )
13 mnfxr -∞ ∈ ℝ*
14 13 a1i ( ( 𝜑𝐶𝑌 ) → -∞ ∈ ℝ* )
15 ssrab2 { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) } ⊆ 𝐴
16 9 15 eqsstri 𝑌𝐴
17 16 a1i ( 𝜑𝑌𝐴 )
18 17 3 sstrd ( 𝜑𝑌 ⊆ ℝ )
19 18 sselda ( ( 𝜑𝐶𝑌 ) → 𝐶 ∈ ℝ )
20 14 19 6 7 iocborel ( ( 𝜑𝐶𝑌 ) → ( -∞ (,] 𝐶 ) ∈ 𝐵 )
21 12 20 eqeltrid ( ( 𝜑𝐶𝑌 ) → 𝐸𝐵 )
22 nfrab1 𝑥 { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) }
23 9 22 nfcxfr 𝑥 𝑌
24 nfcv 𝑥*
25 nfcv 𝑥 <
26 23 24 25 nfsup 𝑥 sup ( 𝑌 , ℝ* , < )
27 10 26 nfcxfr 𝑥 𝐶
28 27 23 nfel 𝑥 𝐶𝑌
29 1 28 nfan 𝑥 ( 𝜑𝐶𝑌 )
30 3 adantr ( ( 𝜑𝐶𝑌 ) → 𝐴 ⊆ ℝ )
31 4 adantr ( ( 𝜑𝐶𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* )
32 5 adantr ( ( 𝜑𝐶𝑌 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
33 8 adantr ( ( 𝜑𝐶𝑌 ) → 𝑅 ∈ ℝ* )
34 simpr ( ( 𝜑𝐶𝑌 ) → 𝐶𝑌 )
35 29 30 31 32 33 9 10 34 12 pimdecfgtioc ( ( 𝜑𝐶𝑌 ) → 𝑌 = ( 𝐸𝐴 ) )
36 ineq1 ( 𝑏 = 𝐸 → ( 𝑏𝐴 ) = ( 𝐸𝐴 ) )
37 36 rspceeqv ( ( 𝐸𝐵𝑌 = ( 𝐸𝐴 ) ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
38 21 35 37 syl2anc ( ( 𝜑𝐶𝑌 ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
39 6 7 iooborel ( -∞ (,) 𝐶 ) ∈ 𝐵
40 11 39 eqeltri 𝐷𝐵
41 40 a1i ( 𝜑𝐷𝐵 )
42 41 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝐷𝐵 )
43 28 nfn 𝑥 ¬ 𝐶𝑌
44 1 43 nfan 𝑥 ( 𝜑 ∧ ¬ 𝐶𝑌 )
45 nfv 𝑦 ¬ 𝐶𝑌
46 2 45 nfan 𝑦 ( 𝜑 ∧ ¬ 𝐶𝑌 )
47 3 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝐴 ⊆ ℝ )
48 4 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* )
49 5 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
50 8 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝑅 ∈ ℝ* )
51 simpr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → ¬ 𝐶𝑌 )
52 44 46 47 48 49 50 9 10 51 11 pimdecfgtioo ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝑌 = ( 𝐷𝐴 ) )
53 ineq1 ( 𝑏 = 𝐷 → ( 𝑏𝐴 ) = ( 𝐷𝐴 ) )
54 53 rspceeqv ( ( 𝐷𝐵𝑌 = ( 𝐷𝐴 ) ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
55 42 52 54 syl2anc ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
56 38 55 pm2.61dan ( 𝜑 → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )