| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decsmf.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | decsmf.y | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 3 |  | decsmf.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | decsmf.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 5 |  | decsmf.i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 6 |  | decsmf.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 7 |  | decsmf.b | ⊢ 𝐵  =  ( SalGen ‘ 𝐽 ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 9 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 10 | 6 9 | eqeltri | ⊢ 𝐽  ∈  Top | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 12 | 11 7 | salgencld | ⊢ ( 𝜑  →  𝐵  ∈  SAlg ) | 
						
							| 13 | 11 7 | unisalgen2 | ⊢ ( 𝜑  →  ∪  𝐵  =  ∪  𝐽 ) | 
						
							| 14 | 6 | unieqi | ⊢ ∪  𝐽  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ∪  𝐽  =  ∪  ( topGen ‘ ran  (,) ) ) | 
						
							| 16 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 17 | 16 | eqcomi | ⊢ ∪  ( topGen ‘ ran  (,) )  =  ℝ | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  ∪  ( topGen ‘ ran  (,) )  =  ℝ ) | 
						
							| 19 | 13 15 18 | 3eqtrrd | ⊢ ( 𝜑  →  ℝ  =  ∪  𝐵 ) | 
						
							| 20 | 3 19 | sseqtrd | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  𝐵 ) | 
						
							| 21 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  ∈  ℝ | 
						
							| 22 | 1 21 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  ℝ ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑦 𝑎  ∈  ℝ | 
						
							| 24 | 2 23 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑎  ∈  ℝ ) | 
						
							| 25 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐴  ⊆  ℝ ) | 
						
							| 26 | 4 | frexr | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 28 |  | breq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  ≤  𝑦  ↔  𝑤  ≤  𝑦 ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑥  =  𝑤  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑤 ) ) | 
						
							| 30 | 29 | breq2d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 31 | 28 30 | imbi12d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑤  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 32 |  | breq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤  ≤  𝑦  ↔  𝑤  ≤  𝑧 ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 34 | 33 | breq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 35 | 32 34 | imbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑤  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑤 ) )  ↔  ( 𝑤  ≤  𝑧  →  ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ) ) ) | 
						
							| 36 | 31 35 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑤  ≤  𝑧  →  ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 37 | 5 36 | sylib | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑤  ≤  𝑧  →  ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ∀ 𝑤  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑤  ≤  𝑧  →  ( 𝐹 ‘ 𝑧 )  ≤  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 39 | 38 36 | sylibr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 40 |  | rexr | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℝ* ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ* ) | 
						
							| 42 |  | eqid | ⊢ { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 44 | 43 | breq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑎  <  ( 𝐹 ‘ 𝑤 )  ↔  𝑎  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 45 | 44 | cbvrabv | ⊢ { 𝑤  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑤 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 46 | 45 | supeq1i | ⊢ sup ( { 𝑤  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑤 ) } ,  ℝ* ,   <  )  =  sup ( { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } ,  ℝ* ,   <  ) | 
						
							| 47 |  | eqid | ⊢ ( -∞ (,) sup ( { 𝑤  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑤 ) } ,  ℝ* ,   <  ) )  =  ( -∞ (,) sup ( { 𝑤  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑤 ) } ,  ℝ* ,   <  ) ) | 
						
							| 48 |  | eqid | ⊢ ( -∞ (,] sup ( { 𝑤  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑤 ) } ,  ℝ* ,   <  ) )  =  ( -∞ (,] sup ( { 𝑤  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑤 ) } ,  ℝ* ,   <  ) ) | 
						
							| 49 | 22 24 25 27 39 6 7 41 42 46 47 48 | decsmflem | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ∃ 𝑏  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  ( 𝑏  ∩  𝐴 ) ) | 
						
							| 50 | 12 | elexd | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 51 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 52 | 51 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 53 | 52 3 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 54 |  | elrest | ⊢ ( ( 𝐵  ∈  V  ∧  𝐴  ∈  V )  →  ( { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝐵  ↾t  𝐴 )  ↔  ∃ 𝑏  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  ( 𝑏  ∩  𝐴 ) ) ) | 
						
							| 55 | 50 53 54 | syl2anc | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝐵  ↾t  𝐴 )  ↔  ∃ 𝑏  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  ( 𝑏  ∩  𝐴 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝐵  ↾t  𝐴 )  ↔  ∃ 𝑏  ∈  𝐵 { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  ( 𝑏  ∩  𝐴 ) ) ) | 
						
							| 57 | 49 56 | mpbird | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐴  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝐵  ↾t  𝐴 ) ) | 
						
							| 58 | 8 12 20 4 57 | issmfgtd | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝐵 ) ) |