Step |
Hyp |
Ref |
Expression |
1 |
|
decsmf.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
decsmf.y |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
decsmf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
decsmf.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
5 |
|
decsmf.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
|
decsmf.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
7 |
|
decsmf.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
9 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
10 |
6 9
|
eqeltri |
⊢ 𝐽 ∈ Top |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
12 |
11 7
|
salgencld |
⊢ ( 𝜑 → 𝐵 ∈ SAlg ) |
13 |
11 7
|
unisalgen2 |
⊢ ( 𝜑 → ∪ 𝐵 = ∪ 𝐽 ) |
14 |
6
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) ) |
16 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
17 |
16
|
eqcomi |
⊢ ∪ ( topGen ‘ ran (,) ) = ℝ |
18 |
17
|
a1i |
⊢ ( 𝜑 → ∪ ( topGen ‘ ran (,) ) = ℝ ) |
19 |
13 15 18
|
3eqtrrd |
⊢ ( 𝜑 → ℝ = ∪ 𝐵 ) |
20 |
3 19
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐵 ) |
21 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 ∈ ℝ |
22 |
1 21
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
23 |
|
nfv |
⊢ Ⅎ 𝑦 𝑎 ∈ ℝ |
24 |
2 23
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
26 |
4
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
28 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
30 |
29
|
breq2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
31 |
28 30
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑤 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) ) |
32 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
34 |
33
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
35 |
32 34
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ↔ ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) ) |
36 |
31 35
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
37 |
5 36
|
sylib |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) ) ) |
39 |
38 36
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
40 |
|
rexr |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* ) |
42 |
|
eqid |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } |
43 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
44 |
43
|
breq2d |
⊢ ( 𝑤 = 𝑥 → ( 𝑎 < ( 𝐹 ‘ 𝑤 ) ↔ 𝑎 < ( 𝐹 ‘ 𝑥 ) ) ) |
45 |
44
|
cbvrabv |
⊢ { 𝑤 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑤 ) } = { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } |
46 |
45
|
supeq1i |
⊢ sup ( { 𝑤 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑤 ) } , ℝ* , < ) = sup ( { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } , ℝ* , < ) |
47 |
|
eqid |
⊢ ( -∞ (,) sup ( { 𝑤 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑤 ) } , ℝ* , < ) ) = ( -∞ (,) sup ( { 𝑤 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑤 ) } , ℝ* , < ) ) |
48 |
|
eqid |
⊢ ( -∞ (,] sup ( { 𝑤 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑤 ) } , ℝ* , < ) ) = ( -∞ (,] sup ( { 𝑤 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑤 ) } , ℝ* , < ) ) |
49 |
22 24 25 27 39 6 7 41 42 46 47 48
|
decsmflem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } = ( 𝑏 ∩ 𝐴 ) ) |
50 |
12
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
51 |
|
reex |
⊢ ℝ ∈ V |
52 |
51
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
53 |
52 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
54 |
|
elrest |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝐵 ↾t 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } = ( 𝑏 ∩ 𝐴 ) ) ) |
55 |
50 53 54
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝐵 ↾t 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } = ( 𝑏 ∩ 𝐴 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝐵 ↾t 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } = ( 𝑏 ∩ 𝐴 ) ) ) |
57 |
49 56
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝑎 < ( 𝐹 ‘ 𝑥 ) } ∈ ( 𝐵 ↾t 𝐴 ) ) |
58 |
8 12 20 4 57
|
issmfgtd |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐵 ) ) |