Metamath Proof Explorer


Theorem decsmf

Description: A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses decsmf.x 𝑥 𝜑
decsmf.y 𝑦 𝜑
decsmf.a ( 𝜑𝐴 ⊆ ℝ )
decsmf.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
decsmf.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
decsmf.j 𝐽 = ( topGen ‘ ran (,) )
decsmf.b 𝐵 = ( SalGen ‘ 𝐽 )
Assertion decsmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 decsmf.x 𝑥 𝜑
2 decsmf.y 𝑦 𝜑
3 decsmf.a ( 𝜑𝐴 ⊆ ℝ )
4 decsmf.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
5 decsmf.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
6 decsmf.j 𝐽 = ( topGen ‘ ran (,) )
7 decsmf.b 𝐵 = ( SalGen ‘ 𝐽 )
8 nfv 𝑎 𝜑
9 retop ( topGen ‘ ran (,) ) ∈ Top
10 6 9 eqeltri 𝐽 ∈ Top
11 10 a1i ( 𝜑𝐽 ∈ Top )
12 11 7 salgencld ( 𝜑𝐵 ∈ SAlg )
13 11 7 unisalgen2 ( 𝜑 𝐵 = 𝐽 )
14 6 unieqi 𝐽 = ( topGen ‘ ran (,) )
15 14 a1i ( 𝜑 𝐽 = ( topGen ‘ ran (,) ) )
16 uniretop ℝ = ( topGen ‘ ran (,) )
17 16 eqcomi ( topGen ‘ ran (,) ) = ℝ
18 17 a1i ( 𝜑 ( topGen ‘ ran (,) ) = ℝ )
19 13 15 18 3eqtrrd ( 𝜑 → ℝ = 𝐵 )
20 3 19 sseqtrd ( 𝜑𝐴 𝐵 )
21 nfv 𝑥 𝑎 ∈ ℝ
22 1 21 nfan 𝑥 ( 𝜑𝑎 ∈ ℝ )
23 nfv 𝑦 𝑎 ∈ ℝ
24 2 23 nfan 𝑦 ( 𝜑𝑎 ∈ ℝ )
25 3 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐴 ⊆ ℝ )
26 4 frexr ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
27 26 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ* )
28 breq1 ( 𝑥 = 𝑤 → ( 𝑥𝑦𝑤𝑦 ) )
29 fveq2 ( 𝑥 = 𝑤 → ( 𝐹𝑥 ) = ( 𝐹𝑤 ) )
30 29 breq2d ( 𝑥 = 𝑤 → ( ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑦 ) ≤ ( 𝐹𝑤 ) ) )
31 28 30 imbi12d ( 𝑥 = 𝑤 → ( ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ↔ ( 𝑤𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑤 ) ) ) )
32 breq2 ( 𝑦 = 𝑧 → ( 𝑤𝑦𝑤𝑧 ) )
33 fveq2 ( 𝑦 = 𝑧 → ( 𝐹𝑦 ) = ( 𝐹𝑧 ) )
34 33 breq1d ( 𝑦 = 𝑧 → ( ( 𝐹𝑦 ) ≤ ( 𝐹𝑤 ) ↔ ( 𝐹𝑧 ) ≤ ( 𝐹𝑤 ) ) )
35 32 34 imbi12d ( 𝑦 = 𝑧 → ( ( 𝑤𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑤 ) ) ↔ ( 𝑤𝑧 → ( 𝐹𝑧 ) ≤ ( 𝐹𝑤 ) ) ) )
36 31 35 cbvral2vw ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ↔ ∀ 𝑤𝐴𝑧𝐴 ( 𝑤𝑧 → ( 𝐹𝑧 ) ≤ ( 𝐹𝑤 ) ) )
37 5 36 sylib ( 𝜑 → ∀ 𝑤𝐴𝑧𝐴 ( 𝑤𝑧 → ( 𝐹𝑧 ) ≤ ( 𝐹𝑤 ) ) )
38 37 adantr ( ( 𝜑𝑎 ∈ ℝ ) → ∀ 𝑤𝐴𝑧𝐴 ( 𝑤𝑧 → ( 𝐹𝑧 ) ≤ ( 𝐹𝑤 ) ) )
39 38 36 sylibr ( ( 𝜑𝑎 ∈ ℝ ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
40 rexr ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* )
41 40 adantl ( ( 𝜑𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* )
42 eqid { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } = { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) }
43 fveq2 ( 𝑤 = 𝑥 → ( 𝐹𝑤 ) = ( 𝐹𝑥 ) )
44 43 breq2d ( 𝑤 = 𝑥 → ( 𝑎 < ( 𝐹𝑤 ) ↔ 𝑎 < ( 𝐹𝑥 ) ) )
45 44 cbvrabv { 𝑤𝐴𝑎 < ( 𝐹𝑤 ) } = { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) }
46 45 supeq1i sup ( { 𝑤𝐴𝑎 < ( 𝐹𝑤 ) } , ℝ* , < ) = sup ( { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } , ℝ* , < )
47 eqid ( -∞ (,) sup ( { 𝑤𝐴𝑎 < ( 𝐹𝑤 ) } , ℝ* , < ) ) = ( -∞ (,) sup ( { 𝑤𝐴𝑎 < ( 𝐹𝑤 ) } , ℝ* , < ) )
48 eqid ( -∞ (,] sup ( { 𝑤𝐴𝑎 < ( 𝐹𝑤 ) } , ℝ* , < ) ) = ( -∞ (,] sup ( { 𝑤𝐴𝑎 < ( 𝐹𝑤 ) } , ℝ* , < ) )
49 22 24 25 27 39 6 7 41 42 46 47 48 decsmflem ( ( 𝜑𝑎 ∈ ℝ ) → ∃ 𝑏𝐵 { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } = ( 𝑏𝐴 ) )
50 12 elexd ( 𝜑𝐵 ∈ V )
51 reex ℝ ∈ V
52 51 a1i ( 𝜑 → ℝ ∈ V )
53 52 3 ssexd ( 𝜑𝐴 ∈ V )
54 elrest ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝐵t 𝐴 ) ↔ ∃ 𝑏𝐵 { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } = ( 𝑏𝐴 ) ) )
55 50 53 54 syl2anc ( 𝜑 → ( { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝐵t 𝐴 ) ↔ ∃ 𝑏𝐵 { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } = ( 𝑏𝐴 ) ) )
56 55 adantr ( ( 𝜑𝑎 ∈ ℝ ) → ( { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝐵t 𝐴 ) ↔ ∃ 𝑏𝐵 { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } = ( 𝑏𝐴 ) ) )
57 49 56 mpbird ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐴𝑎 < ( 𝐹𝑥 ) } ∈ ( 𝐵t 𝐴 ) )
58 8 12 20 4 57 issmfgtd ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝐵 ) )