Metamath Proof Explorer


Theorem decsmf

Description: A real-valued, nonincreasing function is Borel measurable. Proposition 121D (c) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses decsmf.x xφ
decsmf.y yφ
decsmf.a φA
decsmf.f φF:A
decsmf.i φxAyAxyFyFx
decsmf.j J=topGenran.
decsmf.b B=SalGenJ
Assertion decsmf φFSMblFnB

Proof

Step Hyp Ref Expression
1 decsmf.x xφ
2 decsmf.y yφ
3 decsmf.a φA
4 decsmf.f φF:A
5 decsmf.i φxAyAxyFyFx
6 decsmf.j J=topGenran.
7 decsmf.b B=SalGenJ
8 nfv aφ
9 retop topGenran.Top
10 6 9 eqeltri JTop
11 10 a1i φJTop
12 11 7 salgencld φBSAlg
13 11 7 unisalgen2 φB=J
14 6 unieqi J=topGenran.
15 14 a1i φJ=topGenran.
16 uniretop =topGenran.
17 16 eqcomi topGenran.=
18 17 a1i φtopGenran.=
19 13 15 18 3eqtrrd φ=B
20 3 19 sseqtrd φAB
21 nfv xa
22 1 21 nfan xφa
23 nfv ya
24 2 23 nfan yφa
25 3 adantr φaA
26 4 frexr φF:A*
27 26 adantr φaF:A*
28 breq1 x=wxywy
29 fveq2 x=wFx=Fw
30 29 breq2d x=wFyFxFyFw
31 28 30 imbi12d x=wxyFyFxwyFyFw
32 breq2 y=zwywz
33 fveq2 y=zFy=Fz
34 33 breq1d y=zFyFwFzFw
35 32 34 imbi12d y=zwyFyFwwzFzFw
36 31 35 cbvral2vw xAyAxyFyFxwAzAwzFzFw
37 5 36 sylib φwAzAwzFzFw
38 37 adantr φawAzAwzFzFw
39 38 36 sylibr φaxAyAxyFyFx
40 rexr aa*
41 40 adantl φaa*
42 eqid xA|a<Fx=xA|a<Fx
43 fveq2 w=xFw=Fx
44 43 breq2d w=xa<Fwa<Fx
45 44 cbvrabv wA|a<Fw=xA|a<Fx
46 45 supeq1i supwA|a<Fw*<=supxA|a<Fx*<
47 eqid −∞supwA|a<Fw*<=−∞supwA|a<Fw*<
48 eqid −∞supwA|a<Fw*<=−∞supwA|a<Fw*<
49 22 24 25 27 39 6 7 41 42 46 47 48 decsmflem φabBxA|a<Fx=bA
50 12 elexd φBV
51 reex V
52 51 a1i φV
53 52 3 ssexd φAV
54 elrest BVAVxA|a<FxB𝑡AbBxA|a<Fx=bA
55 50 53 54 syl2anc φxA|a<FxB𝑡AbBxA|a<Fx=bA
56 55 adantr φaxA|a<FxB𝑡AbBxA|a<Fx=bA
57 49 56 mpbird φaxA|a<FxB𝑡A
58 8 12 20 4 57 issmfgtd φFSMblFnB