Step |
Hyp |
Ref |
Expression |
1 |
|
decsmflem.x |
|
2 |
|
decsmflem.y |
|
3 |
|
decsmflem.a |
|
4 |
|
decsmflem.f |
|
5 |
|
decsmflem.i |
|
6 |
|
decsmflem.j |
|
7 |
|
decsmflem.b |
|
8 |
|
decsmflem.r |
|
9 |
|
decsmflem.l |
|
10 |
|
decsmflem.c |
|
11 |
|
decsmflem.d |
|
12 |
|
decsmflem.e |
|
13 |
|
mnfxr |
|
14 |
13
|
a1i |
|
15 |
|
ssrab2 |
|
16 |
9 15
|
eqsstri |
|
17 |
16
|
a1i |
|
18 |
17 3
|
sstrd |
|
19 |
18
|
sselda |
|
20 |
14 19 6 7
|
iocborel |
|
21 |
12 20
|
eqeltrid |
|
22 |
|
nfrab1 |
|
23 |
9 22
|
nfcxfr |
|
24 |
|
nfcv |
|
25 |
|
nfcv |
|
26 |
23 24 25
|
nfsup |
|
27 |
10 26
|
nfcxfr |
|
28 |
27 23
|
nfel |
|
29 |
1 28
|
nfan |
|
30 |
3
|
adantr |
|
31 |
4
|
adantr |
|
32 |
5
|
adantr |
|
33 |
8
|
adantr |
|
34 |
|
simpr |
|
35 |
29 30 31 32 33 9 10 34 12
|
pimdecfgtioc |
|
36 |
|
ineq1 |
|
37 |
36
|
rspceeqv |
|
38 |
21 35 37
|
syl2anc |
|
39 |
6 7
|
iooborel |
|
40 |
11 39
|
eqeltri |
|
41 |
40
|
a1i |
|
42 |
41
|
adantr |
|
43 |
28
|
nfn |
|
44 |
1 43
|
nfan |
|
45 |
|
nfv |
|
46 |
2 45
|
nfan |
|
47 |
3
|
adantr |
|
48 |
4
|
adantr |
|
49 |
5
|
adantr |
|
50 |
8
|
adantr |
|
51 |
|
simpr |
|
52 |
44 46 47 48 49 50 9 10 51 11
|
pimdecfgtioo |
|
53 |
|
ineq1 |
|
54 |
53
|
rspceeqv |
|
55 |
42 52 54
|
syl2anc |
|
56 |
38 55
|
pm2.61dan |
|