Step |
Hyp |
Ref |
Expression |
1 |
|
decsmf.x |
|- F/ x ph |
2 |
|
decsmf.y |
|- F/ y ph |
3 |
|
decsmf.a |
|- ( ph -> A C_ RR ) |
4 |
|
decsmf.f |
|- ( ph -> F : A --> RR ) |
5 |
|
decsmf.i |
|- ( ph -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) |
6 |
|
decsmf.j |
|- J = ( topGen ` ran (,) ) |
7 |
|
decsmf.b |
|- B = ( SalGen ` J ) |
8 |
|
nfv |
|- F/ a ph |
9 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
10 |
6 9
|
eqeltri |
|- J e. Top |
11 |
10
|
a1i |
|- ( ph -> J e. Top ) |
12 |
11 7
|
salgencld |
|- ( ph -> B e. SAlg ) |
13 |
11 7
|
unisalgen2 |
|- ( ph -> U. B = U. J ) |
14 |
6
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
15 |
14
|
a1i |
|- ( ph -> U. J = U. ( topGen ` ran (,) ) ) |
16 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
17 |
16
|
eqcomi |
|- U. ( topGen ` ran (,) ) = RR |
18 |
17
|
a1i |
|- ( ph -> U. ( topGen ` ran (,) ) = RR ) |
19 |
13 15 18
|
3eqtrrd |
|- ( ph -> RR = U. B ) |
20 |
3 19
|
sseqtrd |
|- ( ph -> A C_ U. B ) |
21 |
|
nfv |
|- F/ x a e. RR |
22 |
1 21
|
nfan |
|- F/ x ( ph /\ a e. RR ) |
23 |
|
nfv |
|- F/ y a e. RR |
24 |
2 23
|
nfan |
|- F/ y ( ph /\ a e. RR ) |
25 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> A C_ RR ) |
26 |
4
|
frexr |
|- ( ph -> F : A --> RR* ) |
27 |
26
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : A --> RR* ) |
28 |
|
breq1 |
|- ( x = w -> ( x <_ y <-> w <_ y ) ) |
29 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
30 |
29
|
breq2d |
|- ( x = w -> ( ( F ` y ) <_ ( F ` x ) <-> ( F ` y ) <_ ( F ` w ) ) ) |
31 |
28 30
|
imbi12d |
|- ( x = w -> ( ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) <-> ( w <_ y -> ( F ` y ) <_ ( F ` w ) ) ) ) |
32 |
|
breq2 |
|- ( y = z -> ( w <_ y <-> w <_ z ) ) |
33 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
34 |
33
|
breq1d |
|- ( y = z -> ( ( F ` y ) <_ ( F ` w ) <-> ( F ` z ) <_ ( F ` w ) ) ) |
35 |
32 34
|
imbi12d |
|- ( y = z -> ( ( w <_ y -> ( F ` y ) <_ ( F ` w ) ) <-> ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) ) |
36 |
31 35
|
cbvral2vw |
|- ( A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) <-> A. w e. A A. z e. A ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) |
37 |
5 36
|
sylib |
|- ( ph -> A. w e. A A. z e. A ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ a e. RR ) -> A. w e. A A. z e. A ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) |
39 |
38 36
|
sylibr |
|- ( ( ph /\ a e. RR ) -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) |
40 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
41 |
40
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. RR* ) |
42 |
|
eqid |
|- { x e. A | a < ( F ` x ) } = { x e. A | a < ( F ` x ) } |
43 |
|
fveq2 |
|- ( w = x -> ( F ` w ) = ( F ` x ) ) |
44 |
43
|
breq2d |
|- ( w = x -> ( a < ( F ` w ) <-> a < ( F ` x ) ) ) |
45 |
44
|
cbvrabv |
|- { w e. A | a < ( F ` w ) } = { x e. A | a < ( F ` x ) } |
46 |
45
|
supeq1i |
|- sup ( { w e. A | a < ( F ` w ) } , RR* , < ) = sup ( { x e. A | a < ( F ` x ) } , RR* , < ) |
47 |
|
eqid |
|- ( -oo (,) sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) = ( -oo (,) sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) |
48 |
|
eqid |
|- ( -oo (,] sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) = ( -oo (,] sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) |
49 |
22 24 25 27 39 6 7 41 42 46 47 48
|
decsmflem |
|- ( ( ph /\ a e. RR ) -> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) |
50 |
12
|
elexd |
|- ( ph -> B e. _V ) |
51 |
|
reex |
|- RR e. _V |
52 |
51
|
a1i |
|- ( ph -> RR e. _V ) |
53 |
52 3
|
ssexd |
|- ( ph -> A e. _V ) |
54 |
|
elrest |
|- ( ( B e. _V /\ A e. _V ) -> ( { x e. A | a < ( F ` x ) } e. ( B |`t A ) <-> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) ) |
55 |
50 53 54
|
syl2anc |
|- ( ph -> ( { x e. A | a < ( F ` x ) } e. ( B |`t A ) <-> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( { x e. A | a < ( F ` x ) } e. ( B |`t A ) <-> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) ) |
57 |
49 56
|
mpbird |
|- ( ( ph /\ a e. RR ) -> { x e. A | a < ( F ` x ) } e. ( B |`t A ) ) |
58 |
8 12 20 4 57
|
issmfgtd |
|- ( ph -> F e. ( SMblFn ` B ) ) |