| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decsmf.x |  |-  F/ x ph | 
						
							| 2 |  | decsmf.y |  |-  F/ y ph | 
						
							| 3 |  | decsmf.a |  |-  ( ph -> A C_ RR ) | 
						
							| 4 |  | decsmf.f |  |-  ( ph -> F : A --> RR ) | 
						
							| 5 |  | decsmf.i |  |-  ( ph -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 6 |  | decsmf.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 7 |  | decsmf.b |  |-  B = ( SalGen ` J ) | 
						
							| 8 |  | nfv |  |-  F/ a ph | 
						
							| 9 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 10 | 6 9 | eqeltri |  |-  J e. Top | 
						
							| 11 | 10 | a1i |  |-  ( ph -> J e. Top ) | 
						
							| 12 | 11 7 | salgencld |  |-  ( ph -> B e. SAlg ) | 
						
							| 13 | 11 7 | unisalgen2 |  |-  ( ph -> U. B = U. J ) | 
						
							| 14 | 6 | unieqi |  |-  U. J = U. ( topGen ` ran (,) ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> U. J = U. ( topGen ` ran (,) ) ) | 
						
							| 16 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 17 | 16 | eqcomi |  |-  U. ( topGen ` ran (,) ) = RR | 
						
							| 18 | 17 | a1i |  |-  ( ph -> U. ( topGen ` ran (,) ) = RR ) | 
						
							| 19 | 13 15 18 | 3eqtrrd |  |-  ( ph -> RR = U. B ) | 
						
							| 20 | 3 19 | sseqtrd |  |-  ( ph -> A C_ U. B ) | 
						
							| 21 |  | nfv |  |-  F/ x a e. RR | 
						
							| 22 | 1 21 | nfan |  |-  F/ x ( ph /\ a e. RR ) | 
						
							| 23 |  | nfv |  |-  F/ y a e. RR | 
						
							| 24 | 2 23 | nfan |  |-  F/ y ( ph /\ a e. RR ) | 
						
							| 25 | 3 | adantr |  |-  ( ( ph /\ a e. RR ) -> A C_ RR ) | 
						
							| 26 | 4 | frexr |  |-  ( ph -> F : A --> RR* ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ a e. RR ) -> F : A --> RR* ) | 
						
							| 28 |  | breq1 |  |-  ( x = w -> ( x <_ y <-> w <_ y ) ) | 
						
							| 29 |  | fveq2 |  |-  ( x = w -> ( F ` x ) = ( F ` w ) ) | 
						
							| 30 | 29 | breq2d |  |-  ( x = w -> ( ( F ` y ) <_ ( F ` x ) <-> ( F ` y ) <_ ( F ` w ) ) ) | 
						
							| 31 | 28 30 | imbi12d |  |-  ( x = w -> ( ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) <-> ( w <_ y -> ( F ` y ) <_ ( F ` w ) ) ) ) | 
						
							| 32 |  | breq2 |  |-  ( y = z -> ( w <_ y <-> w <_ z ) ) | 
						
							| 33 |  | fveq2 |  |-  ( y = z -> ( F ` y ) = ( F ` z ) ) | 
						
							| 34 | 33 | breq1d |  |-  ( y = z -> ( ( F ` y ) <_ ( F ` w ) <-> ( F ` z ) <_ ( F ` w ) ) ) | 
						
							| 35 | 32 34 | imbi12d |  |-  ( y = z -> ( ( w <_ y -> ( F ` y ) <_ ( F ` w ) ) <-> ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) ) | 
						
							| 36 | 31 35 | cbvral2vw |  |-  ( A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) <-> A. w e. A A. z e. A ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) | 
						
							| 37 | 5 36 | sylib |  |-  ( ph -> A. w e. A A. z e. A ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ a e. RR ) -> A. w e. A A. z e. A ( w <_ z -> ( F ` z ) <_ ( F ` w ) ) ) | 
						
							| 39 | 38 36 | sylibr |  |-  ( ( ph /\ a e. RR ) -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 40 |  | rexr |  |-  ( a e. RR -> a e. RR* ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ph /\ a e. RR ) -> a e. RR* ) | 
						
							| 42 |  | eqid |  |-  { x e. A | a < ( F ` x ) } = { x e. A | a < ( F ` x ) } | 
						
							| 43 |  | fveq2 |  |-  ( w = x -> ( F ` w ) = ( F ` x ) ) | 
						
							| 44 | 43 | breq2d |  |-  ( w = x -> ( a < ( F ` w ) <-> a < ( F ` x ) ) ) | 
						
							| 45 | 44 | cbvrabv |  |-  { w e. A | a < ( F ` w ) } = { x e. A | a < ( F ` x ) } | 
						
							| 46 | 45 | supeq1i |  |-  sup ( { w e. A | a < ( F ` w ) } , RR* , < ) = sup ( { x e. A | a < ( F ` x ) } , RR* , < ) | 
						
							| 47 |  | eqid |  |-  ( -oo (,) sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) = ( -oo (,) sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) | 
						
							| 48 |  | eqid |  |-  ( -oo (,] sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) = ( -oo (,] sup ( { w e. A | a < ( F ` w ) } , RR* , < ) ) | 
						
							| 49 | 22 24 25 27 39 6 7 41 42 46 47 48 | decsmflem |  |-  ( ( ph /\ a e. RR ) -> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) | 
						
							| 50 | 12 | elexd |  |-  ( ph -> B e. _V ) | 
						
							| 51 |  | reex |  |-  RR e. _V | 
						
							| 52 | 51 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 53 | 52 3 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 54 |  | elrest |  |-  ( ( B e. _V /\ A e. _V ) -> ( { x e. A | a < ( F ` x ) } e. ( B |`t A ) <-> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) ) | 
						
							| 55 | 50 53 54 | syl2anc |  |-  ( ph -> ( { x e. A | a < ( F ` x ) } e. ( B |`t A ) <-> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( { x e. A | a < ( F ` x ) } e. ( B |`t A ) <-> E. b e. B { x e. A | a < ( F ` x ) } = ( b i^i A ) ) ) | 
						
							| 57 | 49 56 | mpbird |  |-  ( ( ph /\ a e. RR ) -> { x e. A | a < ( F ` x ) } e. ( B |`t A ) ) | 
						
							| 58 | 8 12 20 4 57 | issmfgtd |  |-  ( ph -> F e. ( SMblFn ` B ) ) |