Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfadd.x | |
|
smfadd.s | |
||
smfadd.a | |
||
smfadd.b | |
||
smfadd.d | |
||
smfadd.m | |
||
smfadd.n | |
||
Assertion | smfadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfadd.x | |
|
2 | smfadd.s | |
|
3 | smfadd.a | |
|
4 | smfadd.b | |
|
5 | smfadd.d | |
|
6 | smfadd.m | |
|
7 | smfadd.n | |
|
8 | nfv | |
|
9 | elinel1 | |
|
10 | 9 | adantl | |
11 | 1 10 | ssdf | |
12 | eqid | |
|
13 | 1 12 4 | dmmptdf | |
14 | 13 | eqcomd | |
15 | eqid | |
|
16 | 2 6 15 | smfdmss | |
17 | 14 16 | eqsstrd | |
18 | 11 17 | sstrd | |
19 | 10 4 | syldan | |
20 | elinel2 | |
|
21 | 20 | adantl | |
22 | 21 5 | syldan | |
23 | 19 22 | readdcld | |
24 | eqid | |
|
25 | 1 23 24 | fmptdf | |
26 | 25 | fvmptelcdm | |
27 | nfv | |
|
28 | 1 27 | nfan | |
29 | 2 | adantr | |
30 | 3 | adantr | |
31 | 4 | adantlr | |
32 | 5 | adantlr | |
33 | 6 | adantr | |
34 | 7 | adantr | |
35 | simpr | |
|
36 | oveq2 | |
|
37 | 36 | breq1d | |
38 | 37 | cbvrabv | |
39 | 38 | mpteq2i | |
40 | 28 29 30 31 32 33 34 35 39 | smfaddlem2 | |
41 | 1 8 2 18 26 40 | issmfdmpt | |