Metamath Proof Explorer


Theorem smfadd

Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfadd.x xφ
smfadd.s φSSAlg
smfadd.a φAV
smfadd.b φxAB
smfadd.d φxCD
smfadd.m φxABSMblFnS
smfadd.n φxCDSMblFnS
Assertion smfadd φxACB+DSMblFnS

Proof

Step Hyp Ref Expression
1 smfadd.x xφ
2 smfadd.s φSSAlg
3 smfadd.a φAV
4 smfadd.b φxAB
5 smfadd.d φxCD
6 smfadd.m φxABSMblFnS
7 smfadd.n φxCDSMblFnS
8 nfv aφ
9 elinel1 xACxA
10 9 adantl φxACxA
11 1 10 ssdf φACA
12 eqid xAB=xAB
13 1 12 4 dmmptdf φdomxAB=A
14 13 eqcomd φA=domxAB
15 eqid domxAB=domxAB
16 2 6 15 smfdmss φdomxABS
17 14 16 eqsstrd φAS
18 11 17 sstrd φACS
19 10 4 syldan φxACB
20 elinel2 xACxC
21 20 adantl φxACxC
22 21 5 syldan φxACD
23 19 22 readdcld φxACB+D
24 eqid xACB+D=xACB+D
25 1 23 24 fmptdf φxACB+D:AC
26 25 fvmptelcdm φxACB+D
27 nfv xa
28 1 27 nfan xφa
29 2 adantr φaSSAlg
30 3 adantr φaAV
31 4 adantlr φaxAB
32 5 adantlr φaxCD
33 6 adantr φaxABSMblFnS
34 7 adantr φaxCDSMblFnS
35 simpr φaa
36 oveq2 r=qp+r=p+q
37 36 breq1d r=qp+r<ap+q<a
38 37 cbvrabv r|p+r<a=q|p+q<a
39 38 mpteq2i pr|p+r<a=pq|p+q<a
40 28 29 30 31 32 33 34 35 39 smfaddlem2 φaxAC|B+D<aS𝑡AC
41 1 8 2 18 26 40 issmfdmpt φxACB+DSMblFnS