Metamath Proof Explorer


Theorem smfadd

Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfadd.x x φ
smfadd.s φ S SAlg
smfadd.a φ A V
smfadd.b φ x A B
smfadd.d φ x C D
smfadd.m φ x A B SMblFn S
smfadd.n φ x C D SMblFn S
Assertion smfadd φ x A C B + D SMblFn S

Proof

Step Hyp Ref Expression
1 smfadd.x x φ
2 smfadd.s φ S SAlg
3 smfadd.a φ A V
4 smfadd.b φ x A B
5 smfadd.d φ x C D
6 smfadd.m φ x A B SMblFn S
7 smfadd.n φ x C D SMblFn S
8 nfv a φ
9 elinel1 x A C x A
10 9 adantl φ x A C x A
11 1 10 ssdf φ A C A
12 eqid x A B = x A B
13 1 12 4 dmmptdf φ dom x A B = A
14 13 eqcomd φ A = dom x A B
15 eqid dom x A B = dom x A B
16 2 6 15 smfdmss φ dom x A B S
17 14 16 eqsstrd φ A S
18 11 17 sstrd φ A C S
19 10 4 syldan φ x A C B
20 elinel2 x A C x C
21 20 adantl φ x A C x C
22 21 5 syldan φ x A C D
23 19 22 readdcld φ x A C B + D
24 eqid x A C B + D = x A C B + D
25 1 23 24 fmptdf φ x A C B + D : A C
26 25 fvmptelrn φ x A C B + D
27 nfv x a
28 1 27 nfan x φ a
29 2 adantr φ a S SAlg
30 3 adantr φ a A V
31 4 adantlr φ a x A B
32 5 adantlr φ a x C D
33 6 adantr φ a x A B SMblFn S
34 7 adantr φ a x C D SMblFn S
35 simpr φ a a
36 oveq2 r = q p + r = p + q
37 36 breq1d r = q p + r < a p + q < a
38 37 cbvrabv r | p + r < a = q | p + q < a
39 38 mpteq2i p r | p + r < a = p q | p + q < a
40 28 29 30 31 32 33 34 35 39 smfaddlem2 φ a x A C | B + D < a S 𝑡 A C
41 1 8 2 18 26 40 issmfdmpt φ x A C B + D SMblFn S