Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℤ ) |
2 |
1
|
zred |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℝ ) |
3 |
|
10re |
⊢ ; 1 0 ∈ ℝ |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
|
7nn |
⊢ 7 ∈ ℕ |
6 |
4 5
|
decnncl |
⊢ ; 2 7 ∈ ℕ |
7 |
6
|
nnnn0i |
⊢ ; 2 7 ∈ ℕ0 |
8 |
|
reexpcl |
⊢ ( ( ; 1 0 ∈ ℝ ∧ ; 2 7 ∈ ℕ0 ) → ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ) |
9 |
3 7 8
|
mp2an |
⊢ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ |
10 |
|
lelttric |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ) → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ∨ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ) |
11 |
2 9 10
|
sylancl |
⊢ ( 𝑛 ∈ Odd → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ∨ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ) |
12 |
|
tgoldbachlt |
⊢ ∃ 𝑚 ∈ ℕ ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ∧ ∀ 𝑜 ∈ Odd ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) ) |
13 |
|
breq2 |
⊢ ( 𝑜 = 𝑛 → ( 7 < 𝑜 ↔ 7 < 𝑛 ) ) |
14 |
|
breq1 |
⊢ ( 𝑜 = 𝑛 → ( 𝑜 < 𝑚 ↔ 𝑛 < 𝑚 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝑜 = 𝑛 → ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) ↔ ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) ) ) |
16 |
|
eleq1w |
⊢ ( 𝑜 = 𝑛 → ( 𝑜 ∈ GoldbachOdd ↔ 𝑛 ∈ GoldbachOdd ) ) |
17 |
15 16
|
imbi12d |
⊢ ( 𝑜 = 𝑛 → ( ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) ↔ ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) ) ) |
18 |
17
|
rspcv |
⊢ ( 𝑛 ∈ Odd → ( ∀ 𝑜 ∈ Odd ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) → ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) ) ) |
19 |
9
|
recni |
⊢ ( ; 1 0 ↑ ; 2 7 ) ∈ ℂ |
20 |
19
|
mulid2i |
⊢ ( 1 · ( ; 1 0 ↑ ; 2 7 ) ) = ( ; 1 0 ↑ ; 2 7 ) |
21 |
|
1re |
⊢ 1 ∈ ℝ |
22 |
|
8re |
⊢ 8 ∈ ℝ |
23 |
21 22
|
pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 8 ∈ ℝ ) |
24 |
23
|
a1i |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( 1 ∈ ℝ ∧ 8 ∈ ℝ ) ) |
25 |
|
0le1 |
⊢ 0 ≤ 1 |
26 |
|
1lt8 |
⊢ 1 < 8 |
27 |
25 26
|
pm3.2i |
⊢ ( 0 ≤ 1 ∧ 1 < 8 ) |
28 |
27
|
a1i |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( 0 ≤ 1 ∧ 1 < 8 ) ) |
29 |
|
3nn |
⊢ 3 ∈ ℕ |
30 |
29
|
decnncl2 |
⊢ ; 3 0 ∈ ℕ |
31 |
30
|
nnnn0i |
⊢ ; 3 0 ∈ ℕ0 |
32 |
|
reexpcl |
⊢ ( ( ; 1 0 ∈ ℝ ∧ ; 3 0 ∈ ℕ0 ) → ( ; 1 0 ↑ ; 3 0 ) ∈ ℝ ) |
33 |
3 31 32
|
mp2an |
⊢ ( ; 1 0 ↑ ; 3 0 ) ∈ ℝ |
34 |
9 33
|
pm3.2i |
⊢ ( ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ ( ; 1 0 ↑ ; 3 0 ) ∈ ℝ ) |
35 |
34
|
a1i |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ ( ; 1 0 ↑ ; 3 0 ) ∈ ℝ ) ) |
36 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
37 |
36 7
|
nn0expcli |
⊢ ( ; 1 0 ↑ ; 2 7 ) ∈ ℕ0 |
38 |
37
|
nn0ge0i |
⊢ 0 ≤ ( ; 1 0 ↑ ; 2 7 ) |
39 |
6
|
nnzi |
⊢ ; 2 7 ∈ ℤ |
40 |
30
|
nnzi |
⊢ ; 3 0 ∈ ℤ |
41 |
3 39 40
|
3pm3.2i |
⊢ ( ; 1 0 ∈ ℝ ∧ ; 2 7 ∈ ℤ ∧ ; 3 0 ∈ ℤ ) |
42 |
|
1lt10 |
⊢ 1 < ; 1 0 |
43 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
44 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
45 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
46 |
|
7lt10 |
⊢ 7 < ; 1 0 |
47 |
|
2lt3 |
⊢ 2 < 3 |
48 |
4 43 44 45 46 47
|
decltc |
⊢ ; 2 7 < ; 3 0 |
49 |
42 48
|
pm3.2i |
⊢ ( 1 < ; 1 0 ∧ ; 2 7 < ; 3 0 ) |
50 |
|
ltexp2a |
⊢ ( ( ( ; 1 0 ∈ ℝ ∧ ; 2 7 ∈ ℤ ∧ ; 3 0 ∈ ℤ ) ∧ ( 1 < ; 1 0 ∧ ; 2 7 < ; 3 0 ) ) → ( ; 1 0 ↑ ; 2 7 ) < ( ; 1 0 ↑ ; 3 0 ) ) |
51 |
41 49 50
|
mp2an |
⊢ ( ; 1 0 ↑ ; 2 7 ) < ( ; 1 0 ↑ ; 3 0 ) |
52 |
38 51
|
pm3.2i |
⊢ ( 0 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ( ; 1 0 ↑ ; 2 7 ) < ( ; 1 0 ↑ ; 3 0 ) ) |
53 |
52
|
a1i |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( 0 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ( ; 1 0 ↑ ; 2 7 ) < ( ; 1 0 ↑ ; 3 0 ) ) ) |
54 |
|
ltmul12a |
⊢ ( ( ( ( 1 ∈ ℝ ∧ 8 ∈ ℝ ) ∧ ( 0 ≤ 1 ∧ 1 < 8 ) ) ∧ ( ( ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ ( ; 1 0 ↑ ; 3 0 ) ∈ ℝ ) ∧ ( 0 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ( ; 1 0 ↑ ; 2 7 ) < ( ; 1 0 ↑ ; 3 0 ) ) ) ) → ( 1 · ( ; 1 0 ↑ ; 2 7 ) ) < ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ) |
55 |
24 28 35 53 54
|
syl22anc |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( 1 · ( ; 1 0 ↑ ; 2 7 ) ) < ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ) |
56 |
20 55
|
eqbrtrrid |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( ; 1 0 ↑ ; 2 7 ) < ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ) |
57 |
9
|
a1i |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ) |
58 |
22 33
|
remulcli |
⊢ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ∈ ℝ |
59 |
58
|
a1i |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ∈ ℝ ) |
60 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
61 |
60
|
adantl |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
62 |
|
lttr |
⊢ ( ( ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( ( ; 1 0 ↑ ; 2 7 ) < ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) → ( ; 1 0 ↑ ; 2 7 ) < 𝑚 ) ) |
63 |
57 59 61 62
|
syl3anc |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( ( ( ; 1 0 ↑ ; 2 7 ) < ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) → ( ; 1 0 ↑ ; 2 7 ) < 𝑚 ) ) |
64 |
56 63
|
mpand |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 → ( ; 1 0 ↑ ; 2 7 ) < 𝑚 ) ) |
65 |
64
|
imp |
⊢ ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) → ( ; 1 0 ↑ ; 2 7 ) < 𝑚 ) |
66 |
2
|
adantr |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
67 |
66 57 61
|
3jca |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( 𝑛 ∈ ℝ ∧ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) → ( 𝑛 ∈ ℝ ∧ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) |
69 |
|
lelttr |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑚 ) → 𝑛 < 𝑚 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) → ( ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑚 ) → 𝑛 < 𝑚 ) ) |
71 |
65 70
|
mpan2d |
⊢ ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → 𝑛 < 𝑚 ) ) |
72 |
71
|
imp |
⊢ ( ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) ∧ 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → 𝑛 < 𝑚 ) |
73 |
72
|
anim1i |
⊢ ( ( ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) ∧ 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ) ∧ 7 < 𝑛 ) → ( 𝑛 < 𝑚 ∧ 7 < 𝑛 ) ) |
74 |
73
|
ancomd |
⊢ ( ( ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) ∧ 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ) ∧ 7 < 𝑛 ) → ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) ) |
75 |
|
pm2.27 |
⊢ ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → ( ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ) ) |
76 |
74 75
|
syl |
⊢ ( ( ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) ∧ 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ) ∧ 7 < 𝑛 ) → ( ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ) ) |
77 |
76
|
ex |
⊢ ( ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) ∧ 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( 7 < 𝑛 → ( ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ) ) ) |
78 |
77
|
com23 |
⊢ ( ( ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) ∧ ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ) ∧ 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) |
79 |
78
|
exp41 |
⊢ ( 𝑛 ∈ Odd → ( 𝑚 ∈ ℕ → ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) ) |
80 |
79
|
com25 |
⊢ ( 𝑛 ∈ Odd → ( ( ( 7 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachOdd ) → ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( 𝑚 ∈ ℕ → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) ) |
81 |
18 80
|
syld |
⊢ ( 𝑛 ∈ Odd → ( ∀ 𝑜 ∈ Odd ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) → ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( 𝑚 ∈ ℕ → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) ) |
82 |
81
|
com15 |
⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑜 ∈ Odd ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) → ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) ) |
83 |
82
|
com23 |
⊢ ( 𝑚 ∈ ℕ → ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 → ( ∀ 𝑜 ∈ Odd ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) ) |
84 |
83
|
imp32 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ∧ ∀ 𝑜 ∈ Odd ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) ) ) → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) |
85 |
84
|
rexlimiva |
⊢ ( ∃ 𝑚 ∈ ℕ ( ( 8 · ( ; 1 0 ↑ ; 3 0 ) ) < 𝑚 ∧ ∀ 𝑜 ∈ Odd ( ( 7 < 𝑜 ∧ 𝑜 < 𝑚 ) → 𝑜 ∈ GoldbachOdd ) ) → ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) |
86 |
12 85
|
ax-mp |
⊢ ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) |
87 |
|
tgoldbachgtALTV |
⊢ ∃ 𝑚 ∈ ℕ ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑜 ∈ Odd ( 𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) ) |
88 |
|
breq2 |
⊢ ( 𝑜 = 𝑛 → ( 𝑚 < 𝑜 ↔ 𝑚 < 𝑛 ) ) |
89 |
88 16
|
imbi12d |
⊢ ( 𝑜 = 𝑛 → ( ( 𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) ↔ ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) |
90 |
89
|
rspcv |
⊢ ( 𝑛 ∈ Odd → ( ∀ 𝑜 ∈ Odd ( 𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) → ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) |
91 |
|
lelttr |
⊢ ( ( 𝑚 ∈ ℝ ∧ ( ; 1 0 ↑ ; 2 7 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → 𝑚 < 𝑛 ) ) |
92 |
61 57 66 91
|
syl3anc |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → 𝑚 < 𝑛 ) ) |
93 |
92
|
expcomd |
⊢ ( ( 𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ ) → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) → 𝑚 < 𝑛 ) ) ) |
94 |
93
|
ex |
⊢ ( 𝑛 ∈ Odd → ( 𝑚 ∈ ℕ → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) → 𝑚 < 𝑛 ) ) ) ) |
95 |
94
|
com23 |
⊢ ( 𝑛 ∈ Odd → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( 𝑚 ∈ ℕ → ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) → 𝑚 < 𝑛 ) ) ) ) |
96 |
95
|
imp43 |
⊢ ( ( ( 𝑛 ∈ Odd ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) ) → 𝑚 < 𝑛 ) |
97 |
|
pm2.27 |
⊢ ( 𝑚 < 𝑛 → ( ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ) ) |
98 |
96 97
|
syl |
⊢ ( ( ( 𝑛 ∈ Odd ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) ) → ( ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ) ) |
99 |
98
|
a1dd |
⊢ ( ( ( 𝑛 ∈ Odd ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) ) → ( ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) |
100 |
99
|
ex |
⊢ ( ( 𝑛 ∈ Odd ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) |
101 |
100
|
com23 |
⊢ ( ( 𝑛 ∈ Odd ∧ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) |
102 |
101
|
ex |
⊢ ( 𝑛 ∈ Odd → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) |
103 |
102
|
com23 |
⊢ ( 𝑛 ∈ Odd → ( ( 𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) |
104 |
90 103
|
syld |
⊢ ( 𝑛 ∈ Odd → ( ∀ 𝑜 ∈ Odd ( 𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) |
105 |
104
|
com14 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ) → ( ∀ 𝑜 ∈ Odd ( 𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) ) |
106 |
105
|
impr |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑜 ∈ Odd ( 𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) ) ) → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) |
107 |
106
|
rexlimiva |
⊢ ( ∃ 𝑚 ∈ ℕ ( 𝑚 ≤ ( ; 1 0 ↑ ; 2 7 ) ∧ ∀ 𝑜 ∈ Odd ( 𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) ) → ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) ) |
108 |
87 107
|
ax-mp |
⊢ ( ( ; 1 0 ↑ ; 2 7 ) < 𝑛 → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) |
109 |
86 108
|
jaoi |
⊢ ( ( 𝑛 ≤ ( ; 1 0 ↑ ; 2 7 ) ∨ ( ; 1 0 ↑ ; 2 7 ) < 𝑛 ) → ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) ) |
110 |
11 109
|
mpcom |
⊢ ( 𝑛 ∈ Odd → ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) |
111 |
110
|
rgen |
⊢ ∀ 𝑛 ∈ Odd ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) |