Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
|- ( n e. Odd -> n e. ZZ ) |
2 |
1
|
zred |
|- ( n e. Odd -> n e. RR ) |
3 |
|
10re |
|- ; 1 0 e. RR |
4 |
|
2nn0 |
|- 2 e. NN0 |
5 |
|
7nn |
|- 7 e. NN |
6 |
4 5
|
decnncl |
|- ; 2 7 e. NN |
7 |
6
|
nnnn0i |
|- ; 2 7 e. NN0 |
8 |
|
reexpcl |
|- ( ( ; 1 0 e. RR /\ ; 2 7 e. NN0 ) -> ( ; 1 0 ^ ; 2 7 ) e. RR ) |
9 |
3 7 8
|
mp2an |
|- ( ; 1 0 ^ ; 2 7 ) e. RR |
10 |
|
lelttric |
|- ( ( n e. RR /\ ( ; 1 0 ^ ; 2 7 ) e. RR ) -> ( n <_ ( ; 1 0 ^ ; 2 7 ) \/ ( ; 1 0 ^ ; 2 7 ) < n ) ) |
11 |
2 9 10
|
sylancl |
|- ( n e. Odd -> ( n <_ ( ; 1 0 ^ ; 2 7 ) \/ ( ; 1 0 ^ ; 2 7 ) < n ) ) |
12 |
|
tgoldbachlt |
|- E. m e. NN ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m /\ A. o e. Odd ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) ) |
13 |
|
breq2 |
|- ( o = n -> ( 7 < o <-> 7 < n ) ) |
14 |
|
breq1 |
|- ( o = n -> ( o < m <-> n < m ) ) |
15 |
13 14
|
anbi12d |
|- ( o = n -> ( ( 7 < o /\ o < m ) <-> ( 7 < n /\ n < m ) ) ) |
16 |
|
eleq1w |
|- ( o = n -> ( o e. GoldbachOdd <-> n e. GoldbachOdd ) ) |
17 |
15 16
|
imbi12d |
|- ( o = n -> ( ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) <-> ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) ) ) |
18 |
17
|
rspcv |
|- ( n e. Odd -> ( A. o e. Odd ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) -> ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) ) ) |
19 |
9
|
recni |
|- ( ; 1 0 ^ ; 2 7 ) e. CC |
20 |
19
|
mulid2i |
|- ( 1 x. ( ; 1 0 ^ ; 2 7 ) ) = ( ; 1 0 ^ ; 2 7 ) |
21 |
|
1re |
|- 1 e. RR |
22 |
|
8re |
|- 8 e. RR |
23 |
21 22
|
pm3.2i |
|- ( 1 e. RR /\ 8 e. RR ) |
24 |
23
|
a1i |
|- ( ( n e. Odd /\ m e. NN ) -> ( 1 e. RR /\ 8 e. RR ) ) |
25 |
|
0le1 |
|- 0 <_ 1 |
26 |
|
1lt8 |
|- 1 < 8 |
27 |
25 26
|
pm3.2i |
|- ( 0 <_ 1 /\ 1 < 8 ) |
28 |
27
|
a1i |
|- ( ( n e. Odd /\ m e. NN ) -> ( 0 <_ 1 /\ 1 < 8 ) ) |
29 |
|
3nn |
|- 3 e. NN |
30 |
29
|
decnncl2 |
|- ; 3 0 e. NN |
31 |
30
|
nnnn0i |
|- ; 3 0 e. NN0 |
32 |
|
reexpcl |
|- ( ( ; 1 0 e. RR /\ ; 3 0 e. NN0 ) -> ( ; 1 0 ^ ; 3 0 ) e. RR ) |
33 |
3 31 32
|
mp2an |
|- ( ; 1 0 ^ ; 3 0 ) e. RR |
34 |
9 33
|
pm3.2i |
|- ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ ( ; 1 0 ^ ; 3 0 ) e. RR ) |
35 |
34
|
a1i |
|- ( ( n e. Odd /\ m e. NN ) -> ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ ( ; 1 0 ^ ; 3 0 ) e. RR ) ) |
36 |
|
10nn0 |
|- ; 1 0 e. NN0 |
37 |
36 7
|
nn0expcli |
|- ( ; 1 0 ^ ; 2 7 ) e. NN0 |
38 |
37
|
nn0ge0i |
|- 0 <_ ( ; 1 0 ^ ; 2 7 ) |
39 |
6
|
nnzi |
|- ; 2 7 e. ZZ |
40 |
30
|
nnzi |
|- ; 3 0 e. ZZ |
41 |
3 39 40
|
3pm3.2i |
|- ( ; 1 0 e. RR /\ ; 2 7 e. ZZ /\ ; 3 0 e. ZZ ) |
42 |
|
1lt10 |
|- 1 < ; 1 0 |
43 |
|
3nn0 |
|- 3 e. NN0 |
44 |
|
7nn0 |
|- 7 e. NN0 |
45 |
|
0nn0 |
|- 0 e. NN0 |
46 |
|
7lt10 |
|- 7 < ; 1 0 |
47 |
|
2lt3 |
|- 2 < 3 |
48 |
4 43 44 45 46 47
|
decltc |
|- ; 2 7 < ; 3 0 |
49 |
42 48
|
pm3.2i |
|- ( 1 < ; 1 0 /\ ; 2 7 < ; 3 0 ) |
50 |
|
ltexp2a |
|- ( ( ( ; 1 0 e. RR /\ ; 2 7 e. ZZ /\ ; 3 0 e. ZZ ) /\ ( 1 < ; 1 0 /\ ; 2 7 < ; 3 0 ) ) -> ( ; 1 0 ^ ; 2 7 ) < ( ; 1 0 ^ ; 3 0 ) ) |
51 |
41 49 50
|
mp2an |
|- ( ; 1 0 ^ ; 2 7 ) < ( ; 1 0 ^ ; 3 0 ) |
52 |
38 51
|
pm3.2i |
|- ( 0 <_ ( ; 1 0 ^ ; 2 7 ) /\ ( ; 1 0 ^ ; 2 7 ) < ( ; 1 0 ^ ; 3 0 ) ) |
53 |
52
|
a1i |
|- ( ( n e. Odd /\ m e. NN ) -> ( 0 <_ ( ; 1 0 ^ ; 2 7 ) /\ ( ; 1 0 ^ ; 2 7 ) < ( ; 1 0 ^ ; 3 0 ) ) ) |
54 |
|
ltmul12a |
|- ( ( ( ( 1 e. RR /\ 8 e. RR ) /\ ( 0 <_ 1 /\ 1 < 8 ) ) /\ ( ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ ( ; 1 0 ^ ; 3 0 ) e. RR ) /\ ( 0 <_ ( ; 1 0 ^ ; 2 7 ) /\ ( ; 1 0 ^ ; 2 7 ) < ( ; 1 0 ^ ; 3 0 ) ) ) ) -> ( 1 x. ( ; 1 0 ^ ; 2 7 ) ) < ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) ) |
55 |
24 28 35 53 54
|
syl22anc |
|- ( ( n e. Odd /\ m e. NN ) -> ( 1 x. ( ; 1 0 ^ ; 2 7 ) ) < ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) ) |
56 |
20 55
|
eqbrtrrid |
|- ( ( n e. Odd /\ m e. NN ) -> ( ; 1 0 ^ ; 2 7 ) < ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) ) |
57 |
9
|
a1i |
|- ( ( n e. Odd /\ m e. NN ) -> ( ; 1 0 ^ ; 2 7 ) e. RR ) |
58 |
22 33
|
remulcli |
|- ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) e. RR |
59 |
58
|
a1i |
|- ( ( n e. Odd /\ m e. NN ) -> ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) e. RR ) |
60 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
61 |
60
|
adantl |
|- ( ( n e. Odd /\ m e. NN ) -> m e. RR ) |
62 |
|
lttr |
|- ( ( ( ; 1 0 ^ ; 2 7 ) e. RR /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) e. RR /\ m e. RR ) -> ( ( ( ; 1 0 ^ ; 2 7 ) < ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) -> ( ; 1 0 ^ ; 2 7 ) < m ) ) |
63 |
57 59 61 62
|
syl3anc |
|- ( ( n e. Odd /\ m e. NN ) -> ( ( ( ; 1 0 ^ ; 2 7 ) < ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) -> ( ; 1 0 ^ ; 2 7 ) < m ) ) |
64 |
56 63
|
mpand |
|- ( ( n e. Odd /\ m e. NN ) -> ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m -> ( ; 1 0 ^ ; 2 7 ) < m ) ) |
65 |
64
|
imp |
|- ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) -> ( ; 1 0 ^ ; 2 7 ) < m ) |
66 |
2
|
adantr |
|- ( ( n e. Odd /\ m e. NN ) -> n e. RR ) |
67 |
66 57 61
|
3jca |
|- ( ( n e. Odd /\ m e. NN ) -> ( n e. RR /\ ( ; 1 0 ^ ; 2 7 ) e. RR /\ m e. RR ) ) |
68 |
67
|
adantr |
|- ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) -> ( n e. RR /\ ( ; 1 0 ^ ; 2 7 ) e. RR /\ m e. RR ) ) |
69 |
|
lelttr |
|- ( ( n e. RR /\ ( ; 1 0 ^ ; 2 7 ) e. RR /\ m e. RR ) -> ( ( n <_ ( ; 1 0 ^ ; 2 7 ) /\ ( ; 1 0 ^ ; 2 7 ) < m ) -> n < m ) ) |
70 |
68 69
|
syl |
|- ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) -> ( ( n <_ ( ; 1 0 ^ ; 2 7 ) /\ ( ; 1 0 ^ ; 2 7 ) < m ) -> n < m ) ) |
71 |
65 70
|
mpan2d |
|- ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> n < m ) ) |
72 |
71
|
imp |
|- ( ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) /\ n <_ ( ; 1 0 ^ ; 2 7 ) ) -> n < m ) |
73 |
72
|
anim1i |
|- ( ( ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) /\ n <_ ( ; 1 0 ^ ; 2 7 ) ) /\ 7 < n ) -> ( n < m /\ 7 < n ) ) |
74 |
73
|
ancomd |
|- ( ( ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) /\ n <_ ( ; 1 0 ^ ; 2 7 ) ) /\ 7 < n ) -> ( 7 < n /\ n < m ) ) |
75 |
|
pm2.27 |
|- ( ( 7 < n /\ n < m ) -> ( ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) -> n e. GoldbachOdd ) ) |
76 |
74 75
|
syl |
|- ( ( ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) /\ n <_ ( ; 1 0 ^ ; 2 7 ) ) /\ 7 < n ) -> ( ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) -> n e. GoldbachOdd ) ) |
77 |
76
|
ex |
|- ( ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) /\ n <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( 7 < n -> ( ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) -> n e. GoldbachOdd ) ) ) |
78 |
77
|
com23 |
|- ( ( ( ( n e. Odd /\ m e. NN ) /\ ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m ) /\ n <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) |
79 |
78
|
exp41 |
|- ( n e. Odd -> ( m e. NN -> ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) ) |
80 |
79
|
com25 |
|- ( n e. Odd -> ( ( ( 7 < n /\ n < m ) -> n e. GoldbachOdd ) -> ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( m e. NN -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) ) |
81 |
18 80
|
syld |
|- ( n e. Odd -> ( A. o e. Odd ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) -> ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( m e. NN -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) ) |
82 |
81
|
com15 |
|- ( m e. NN -> ( A. o e. Odd ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) -> ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) ) |
83 |
82
|
com23 |
|- ( m e. NN -> ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m -> ( A. o e. Odd ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) ) |
84 |
83
|
imp32 |
|- ( ( m e. NN /\ ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m /\ A. o e. Odd ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) ) ) -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) |
85 |
84
|
rexlimiva |
|- ( E. m e. NN ( ( 8 x. ( ; 1 0 ^ ; 3 0 ) ) < m /\ A. o e. Odd ( ( 7 < o /\ o < m ) -> o e. GoldbachOdd ) ) -> ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) |
86 |
12 85
|
ax-mp |
|- ( n <_ ( ; 1 0 ^ ; 2 7 ) -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) |
87 |
|
tgoldbachgtALTV |
|- E. m e. NN ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ A. o e. Odd ( m < o -> o e. GoldbachOdd ) ) |
88 |
|
breq2 |
|- ( o = n -> ( m < o <-> m < n ) ) |
89 |
88 16
|
imbi12d |
|- ( o = n -> ( ( m < o -> o e. GoldbachOdd ) <-> ( m < n -> n e. GoldbachOdd ) ) ) |
90 |
89
|
rspcv |
|- ( n e. Odd -> ( A. o e. Odd ( m < o -> o e. GoldbachOdd ) -> ( m < n -> n e. GoldbachOdd ) ) ) |
91 |
|
lelttr |
|- ( ( m e. RR /\ ( ; 1 0 ^ ; 2 7 ) e. RR /\ n e. RR ) -> ( ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ ( ; 1 0 ^ ; 2 7 ) < n ) -> m < n ) ) |
92 |
61 57 66 91
|
syl3anc |
|- ( ( n e. Odd /\ m e. NN ) -> ( ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ ( ; 1 0 ^ ; 2 7 ) < n ) -> m < n ) ) |
93 |
92
|
expcomd |
|- ( ( n e. Odd /\ m e. NN ) -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( m <_ ( ; 1 0 ^ ; 2 7 ) -> m < n ) ) ) |
94 |
93
|
ex |
|- ( n e. Odd -> ( m e. NN -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( m <_ ( ; 1 0 ^ ; 2 7 ) -> m < n ) ) ) ) |
95 |
94
|
com23 |
|- ( n e. Odd -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( m e. NN -> ( m <_ ( ; 1 0 ^ ; 2 7 ) -> m < n ) ) ) ) |
96 |
95
|
imp43 |
|- ( ( ( n e. Odd /\ ( ; 1 0 ^ ; 2 7 ) < n ) /\ ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) ) -> m < n ) |
97 |
|
pm2.27 |
|- ( m < n -> ( ( m < n -> n e. GoldbachOdd ) -> n e. GoldbachOdd ) ) |
98 |
96 97
|
syl |
|- ( ( ( n e. Odd /\ ( ; 1 0 ^ ; 2 7 ) < n ) /\ ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) ) -> ( ( m < n -> n e. GoldbachOdd ) -> n e. GoldbachOdd ) ) |
99 |
98
|
a1dd |
|- ( ( ( n e. Odd /\ ( ; 1 0 ^ ; 2 7 ) < n ) /\ ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) ) -> ( ( m < n -> n e. GoldbachOdd ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) |
100 |
99
|
ex |
|- ( ( n e. Odd /\ ( ; 1 0 ^ ; 2 7 ) < n ) -> ( ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( ( m < n -> n e. GoldbachOdd ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) |
101 |
100
|
com23 |
|- ( ( n e. Odd /\ ( ; 1 0 ^ ; 2 7 ) < n ) -> ( ( m < n -> n e. GoldbachOdd ) -> ( ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) |
102 |
101
|
ex |
|- ( n e. Odd -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( ( m < n -> n e. GoldbachOdd ) -> ( ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) |
103 |
102
|
com23 |
|- ( n e. Odd -> ( ( m < n -> n e. GoldbachOdd ) -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) |
104 |
90 103
|
syld |
|- ( n e. Odd -> ( A. o e. Odd ( m < o -> o e. GoldbachOdd ) -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) |
105 |
104
|
com14 |
|- ( ( m e. NN /\ m <_ ( ; 1 0 ^ ; 2 7 ) ) -> ( A. o e. Odd ( m < o -> o e. GoldbachOdd ) -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) ) |
106 |
105
|
impr |
|- ( ( m e. NN /\ ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ A. o e. Odd ( m < o -> o e. GoldbachOdd ) ) ) -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) |
107 |
106
|
rexlimiva |
|- ( E. m e. NN ( m <_ ( ; 1 0 ^ ; 2 7 ) /\ A. o e. Odd ( m < o -> o e. GoldbachOdd ) ) -> ( ( ; 1 0 ^ ; 2 7 ) < n -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) ) |
108 |
87 107
|
ax-mp |
|- ( ( ; 1 0 ^ ; 2 7 ) < n -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) |
109 |
86 108
|
jaoi |
|- ( ( n <_ ( ; 1 0 ^ ; 2 7 ) \/ ( ; 1 0 ^ ; 2 7 ) < n ) -> ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) ) |
110 |
11 109
|
mpcom |
|- ( n e. Odd -> ( 7 < n -> n e. GoldbachOdd ) ) |
111 |
110
|
rgen |
|- A. n e. Odd ( 7 < n -> n e. GoldbachOdd ) |