Metamath Proof Explorer


Theorem unidifsnne

Description: The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017)

Ref Expression
Assertion unidifsnne ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 )

Proof

Step Hyp Ref Expression
1 2onn 2o ∈ ω
2 nnfi ( 2o ∈ ω → 2o ∈ Fin )
3 1 2 ax-mp 2o ∈ Fin
4 enfi ( 𝑃 ≈ 2o → ( 𝑃 ∈ Fin ↔ 2o ∈ Fin ) )
5 3 4 mpbiri ( 𝑃 ≈ 2o𝑃 ∈ Fin )
6 5 adantl ( ( 𝑋𝑃𝑃 ≈ 2o ) → 𝑃 ∈ Fin )
7 diffi ( 𝑃 ∈ Fin → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin )
8 6 7 syl ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ∈ Fin )
9 8 cardidd ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) ≈ ( 𝑃 ∖ { 𝑋 } ) )
10 9 ensymd ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) )
11 simpl ( ( 𝑋𝑃𝑃 ≈ 2o ) → 𝑋𝑃 )
12 dif1card ( ( 𝑃 ∈ Fin ∧ 𝑋𝑃 ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) )
13 6 11 12 syl2anc ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) )
14 cardennn ( ( 𝑃 ≈ 2o ∧ 2o ∈ ω ) → ( card ‘ 𝑃 ) = 2o )
15 1 14 mpan2 ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = 2o )
16 df-2o 2o = suc 1o
17 15 16 eqtrdi ( 𝑃 ≈ 2o → ( card ‘ 𝑃 ) = suc 1o )
18 17 adantl ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ 𝑃 ) = suc 1o )
19 13 18 eqtr3d ( ( 𝑋𝑃𝑃 ≈ 2o ) → suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o )
20 suc11reg ( suc ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = suc 1o ↔ ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o )
21 19 20 sylib ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( card ‘ ( 𝑃 ∖ { 𝑋 } ) ) = 1o )
22 10 21 breqtrd ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o )
23 en1 ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ↔ ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
24 22 23 sylib ( ( 𝑋𝑃𝑃 ≈ 2o ) → ∃ 𝑥 ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
25 simplll ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → 𝑋𝑃 )
26 25 elexd ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → 𝑋 ∈ V )
27 simplr ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
28 sneqbg ( 𝑋𝑃 → ( { 𝑋 } = { 𝑥 } ↔ 𝑋 = 𝑥 ) )
29 28 biimpar ( ( 𝑋𝑃𝑋 = 𝑥 ) → { 𝑋 } = { 𝑥 } )
30 29 ad4ant14 ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → { 𝑋 } = { 𝑥 } )
31 27 30 eqtr4d ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑋 } )
32 31 ineq2d ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ( { 𝑋 } ∩ ( 𝑃 ∖ { 𝑋 } ) ) = ( { 𝑋 } ∩ { 𝑋 } ) )
33 disjdif ( { 𝑋 } ∩ ( 𝑃 ∖ { 𝑋 } ) ) = ∅
34 inidm ( { 𝑋 } ∩ { 𝑋 } ) = { 𝑋 }
35 32 33 34 3eqtr3g ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ∅ = { 𝑋 } )
36 35 eqcomd ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → { 𝑋 } = ∅ )
37 snprc ( ¬ 𝑋 ∈ V ↔ { 𝑋 } = ∅ )
38 36 37 sylibr ( ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) ∧ 𝑋 = 𝑥 ) → ¬ 𝑋 ∈ V )
39 26 38 pm2.65da ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ¬ 𝑋 = 𝑥 )
40 39 neqned ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → 𝑋𝑥 )
41 simpr ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
42 41 unieqd ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } )
43 vex 𝑥 ∈ V
44 43 unisn { 𝑥 } = 𝑥
45 42 44 eqtrdi ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) = 𝑥 )
46 40 45 neeqtrrd ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → 𝑋 ( 𝑃 ∖ { 𝑋 } ) )
47 46 necomd ( ( ( 𝑋𝑃𝑃 ≈ 2o ) ∧ ( 𝑃 ∖ { 𝑋 } ) = { 𝑥 } ) → ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 )
48 24 47 exlimddv ( ( 𝑋𝑃𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 )