| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2onn |
|
| 2 |
|
nnfi |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
enfi |
|
| 5 |
3 4
|
mpbiri |
|
| 6 |
5
|
adantl |
|
| 7 |
|
diffi |
|
| 8 |
6 7
|
syl |
|
| 9 |
8
|
cardidd |
|
| 10 |
9
|
ensymd |
|
| 11 |
|
simpl |
|
| 12 |
|
dif1card |
|
| 13 |
6 11 12
|
syl2anc |
|
| 14 |
|
cardennn |
|
| 15 |
1 14
|
mpan2 |
|
| 16 |
|
df-2o |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
17
|
adantl |
|
| 19 |
13 18
|
eqtr3d |
|
| 20 |
|
suc11reg |
|
| 21 |
19 20
|
sylib |
|
| 22 |
10 21
|
breqtrd |
|
| 23 |
|
en1 |
|
| 24 |
22 23
|
sylib |
|
| 25 |
|
simplll |
|
| 26 |
25
|
elexd |
|
| 27 |
|
simplr |
|
| 28 |
|
sneqbg |
|
| 29 |
28
|
biimpar |
|
| 30 |
29
|
ad4ant14 |
|
| 31 |
27 30
|
eqtr4d |
|
| 32 |
31
|
ineq2d |
|
| 33 |
|
disjdif |
|
| 34 |
|
inidm |
|
| 35 |
32 33 34
|
3eqtr3g |
|
| 36 |
35
|
eqcomd |
|
| 37 |
|
snprc |
|
| 38 |
36 37
|
sylibr |
|
| 39 |
26 38
|
pm2.65da |
|
| 40 |
39
|
neqned |
|
| 41 |
|
simpr |
|
| 42 |
41
|
unieqd |
|
| 43 |
|
unisnv |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
40 44
|
neeqtrrd |
|
| 46 |
45
|
necomd |
|
| 47 |
24 46
|
exlimddv |
|