| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcld.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) |
| 3 |
|
elioore |
⊢ ( 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) → 𝑦 ∈ ℝ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) → 𝑦 ∈ ℝ ) |
| 5 |
|
eliooord |
⊢ ( 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) → ( 𝑥 < 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) |
| 6 |
|
btwnnz |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 < 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) → ¬ 𝑦 ∈ ℤ ) |
| 7 |
6
|
3expb |
⊢ ( ( 𝑥 ∈ ℤ ∧ ( 𝑥 < 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) → ¬ 𝑦 ∈ ℤ ) |
| 8 |
5 7
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) → ¬ 𝑦 ∈ ℤ ) |
| 9 |
4 8
|
eldifd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) → 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 10 |
9
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) → 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 11 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 ∈ ℝ ) |
| 12 |
11
|
flcld |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ∈ ℤ ) |
| 13 |
12
|
zred |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ∈ ℝ ) |
| 14 |
|
flle |
⊢ ( 𝑦 ∈ ℝ → ( ⌊ ‘ 𝑦 ) ≤ 𝑦 ) |
| 15 |
11 14
|
syl |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ≤ 𝑦 ) |
| 16 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ¬ 𝑦 ∈ ℤ ) |
| 17 |
|
nelne2 |
⊢ ( ( ( ⌊ ‘ 𝑦 ) ∈ ℤ ∧ ¬ 𝑦 ∈ ℤ ) → ( ⌊ ‘ 𝑦 ) ≠ 𝑦 ) |
| 18 |
12 16 17
|
syl2anc |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ≠ 𝑦 ) |
| 19 |
18
|
necomd |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 ≠ ( ⌊ ‘ 𝑦 ) ) |
| 20 |
13 11 15 19
|
leneltd |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) < 𝑦 ) |
| 21 |
|
flltp1 |
⊢ ( 𝑦 ∈ ℝ → 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) |
| 22 |
11 21
|
syl |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) |
| 23 |
13
|
rexrd |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ⌊ ‘ 𝑦 ) ∈ ℝ* ) |
| 24 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑦 ) ∈ ℝ → ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 25 |
13 24
|
syl |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 26 |
25
|
rexrd |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ* ) |
| 27 |
|
elioo2 |
⊢ ( ( ( ⌊ ‘ 𝑦 ) ∈ ℝ* ∧ ( ( ⌊ ‘ 𝑦 ) + 1 ) ∈ ℝ* ) → ( 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ⌊ ‘ 𝑦 ) < 𝑦 ∧ 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) ) |
| 28 |
23 26 27
|
syl2anc |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ( 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ⌊ ‘ 𝑦 ) < 𝑦 ∧ 𝑦 < ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) ) |
| 29 |
11 20 22 28
|
mpbir3and |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) |
| 30 |
|
id |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → 𝑥 = ( ⌊ ‘ 𝑦 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → ( 𝑥 + 1 ) = ( ( ⌊ ‘ 𝑦 ) + 1 ) ) |
| 32 |
30 31
|
oveq12d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → ( 𝑥 (,) ( 𝑥 + 1 ) ) = ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) |
| 33 |
32
|
eleq2d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑦 ) → ( 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) ) |
| 34 |
33
|
rspcev |
⊢ ( ( ( ⌊ ‘ 𝑦 ) ∈ ℤ ∧ 𝑦 ∈ ( ( ⌊ ‘ 𝑦 ) (,) ( ( ⌊ ‘ 𝑦 ) + 1 ) ) ) → ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) |
| 35 |
12 29 34
|
syl2anc |
⊢ ( 𝑦 ∈ ( ℝ ∖ ℤ ) → ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ) |
| 36 |
10 35
|
impbii |
⊢ ( ∃ 𝑥 ∈ ℤ 𝑦 ∈ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 37 |
2 36
|
bitri |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ↔ 𝑦 ∈ ( ℝ ∖ ℤ ) ) |
| 38 |
37
|
eqriv |
⊢ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) = ( ℝ ∖ ℤ ) |
| 39 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 40 |
1 39
|
eqeltri |
⊢ 𝐽 ∈ Top |
| 41 |
|
iooretop |
⊢ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ ( topGen ‘ ran (,) ) |
| 42 |
41 1
|
eleqtrri |
⊢ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 |
| 43 |
42
|
rgenw |
⊢ ∀ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 |
| 44 |
|
iunopn |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 ) → ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 ) |
| 45 |
40 43 44
|
mp2an |
⊢ ∪ 𝑥 ∈ ℤ ( 𝑥 (,) ( 𝑥 + 1 ) ) ∈ 𝐽 |
| 46 |
38 45
|
eqeltrri |
⊢ ( ℝ ∖ ℤ ) ∈ 𝐽 |
| 47 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 48 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 49 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 50 |
48 49
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
| 51 |
50
|
iscld2 |
⊢ ( ( 𝐽 ∈ Top ∧ ℤ ⊆ ℝ ) → ( ℤ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℝ ∖ ℤ ) ∈ 𝐽 ) ) |
| 52 |
40 47 51
|
mp2an |
⊢ ( ℤ ∈ ( Clsd ‘ 𝐽 ) ↔ ( ℝ ∖ ℤ ) ∈ 𝐽 ) |
| 53 |
46 52
|
mpbir |
⊢ ℤ ∈ ( Clsd ‘ 𝐽 ) |