Step |
Hyp |
Ref |
Expression |
1 |
|
alephon |
|- ( aleph ` A ) e. On |
2 |
|
id |
|- ( ( card ` B ) = B -> ( card ` B ) = B ) |
3 |
|
cardon |
|- ( card ` B ) e. On |
4 |
2 3
|
eqeltrrdi |
|- ( ( card ` B ) = B -> B e. On ) |
5 |
|
onenon |
|- ( B e. On -> B e. dom card ) |
6 |
4 5
|
syl |
|- ( ( card ` B ) = B -> B e. dom card ) |
7 |
|
cardsdomel |
|- ( ( ( aleph ` A ) e. On /\ B e. dom card ) -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. ( card ` B ) ) ) |
8 |
1 6 7
|
sylancr |
|- ( ( card ` B ) = B -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. ( card ` B ) ) ) |
9 |
|
eleq2 |
|- ( ( card ` B ) = B -> ( ( aleph ` A ) e. ( card ` B ) <-> ( aleph ` A ) e. B ) ) |
10 |
8 9
|
bitrd |
|- ( ( card ` B ) = B -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. B ) ) |
11 |
10
|
adantl |
|- ( ( A e. On /\ ( card ` B ) = B ) -> ( ( aleph ` A ) ~< B <-> ( aleph ` A ) e. B ) ) |
12 |
|
alephsuc |
|- ( A e. On -> ( aleph ` suc A ) = ( har ` ( aleph ` A ) ) ) |
13 |
|
onenon |
|- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
14 |
|
harval2 |
|- ( ( aleph ` A ) e. dom card -> ( har ` ( aleph ` A ) ) = |^| { x e. On | ( aleph ` A ) ~< x } ) |
15 |
1 13 14
|
mp2b |
|- ( har ` ( aleph ` A ) ) = |^| { x e. On | ( aleph ` A ) ~< x } |
16 |
12 15
|
eqtrdi |
|- ( A e. On -> ( aleph ` suc A ) = |^| { x e. On | ( aleph ` A ) ~< x } ) |
17 |
16
|
eleq2d |
|- ( A e. On -> ( B e. ( aleph ` suc A ) <-> B e. |^| { x e. On | ( aleph ` A ) ~< x } ) ) |
18 |
17
|
biimpd |
|- ( A e. On -> ( B e. ( aleph ` suc A ) -> B e. |^| { x e. On | ( aleph ` A ) ~< x } ) ) |
19 |
|
breq2 |
|- ( x = B -> ( ( aleph ` A ) ~< x <-> ( aleph ` A ) ~< B ) ) |
20 |
19
|
onnminsb |
|- ( B e. On -> ( B e. |^| { x e. On | ( aleph ` A ) ~< x } -> -. ( aleph ` A ) ~< B ) ) |
21 |
18 20
|
sylan9 |
|- ( ( A e. On /\ B e. On ) -> ( B e. ( aleph ` suc A ) -> -. ( aleph ` A ) ~< B ) ) |
22 |
21
|
con2d |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~< B -> -. B e. ( aleph ` suc A ) ) ) |
23 |
4 22
|
sylan2 |
|- ( ( A e. On /\ ( card ` B ) = B ) -> ( ( aleph ` A ) ~< B -> -. B e. ( aleph ` suc A ) ) ) |
24 |
11 23
|
sylbird |
|- ( ( A e. On /\ ( card ` B ) = B ) -> ( ( aleph ` A ) e. B -> -. B e. ( aleph ` suc A ) ) ) |
25 |
|
imnan |
|- ( ( ( aleph ` A ) e. B -> -. B e. ( aleph ` suc A ) ) <-> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |
26 |
24 25
|
sylib |
|- ( ( A e. On /\ ( card ` B ) = B ) -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |
27 |
26
|
ex |
|- ( A e. On -> ( ( card ` B ) = B -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) ) |
28 |
|
n0i |
|- ( B e. ( aleph ` suc A ) -> -. ( aleph ` suc A ) = (/) ) |
29 |
|
alephfnon |
|- aleph Fn On |
30 |
29
|
fndmi |
|- dom aleph = On |
31 |
30
|
eleq2i |
|- ( suc A e. dom aleph <-> suc A e. On ) |
32 |
|
ndmfv |
|- ( -. suc A e. dom aleph -> ( aleph ` suc A ) = (/) ) |
33 |
31 32
|
sylnbir |
|- ( -. suc A e. On -> ( aleph ` suc A ) = (/) ) |
34 |
28 33
|
nsyl2 |
|- ( B e. ( aleph ` suc A ) -> suc A e. On ) |
35 |
|
sucelon |
|- ( A e. On <-> suc A e. On ) |
36 |
34 35
|
sylibr |
|- ( B e. ( aleph ` suc A ) -> A e. On ) |
37 |
36
|
adantl |
|- ( ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) -> A e. On ) |
38 |
37
|
con3i |
|- ( -. A e. On -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |
39 |
38
|
a1d |
|- ( -. A e. On -> ( ( card ` B ) = B -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) ) |
40 |
27 39
|
pm2.61i |
|- ( ( card ` B ) = B -> -. ( ( aleph ` A ) e. B /\ B e. ( aleph ` suc A ) ) ) |