Metamath Proof Explorer


Theorem bndss

Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion bndss
|- ( ( M e. ( Bnd ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Bnd ` S ) )

Proof

Step Hyp Ref Expression
1 metres2
 |-  ( ( M e. ( Met ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) )
2 1 adantlr
 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) )
3 ssel2
 |-  ( ( S C_ X /\ x e. S ) -> x e. X )
4 3 ancoms
 |-  ( ( x e. S /\ S C_ X ) -> x e. X )
5 oveq1
 |-  ( y = x -> ( y ( ball ` M ) r ) = ( x ( ball ` M ) r ) )
6 5 eqeq2d
 |-  ( y = x -> ( X = ( y ( ball ` M ) r ) <-> X = ( x ( ball ` M ) r ) ) )
7 6 rexbidv
 |-  ( y = x -> ( E. r e. RR+ X = ( y ( ball ` M ) r ) <-> E. r e. RR+ X = ( x ( ball ` M ) r ) ) )
8 7 rspcva
 |-  ( ( x e. X /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) )
9 4 8 sylan
 |-  ( ( ( x e. S /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) )
10 9 adantlll
 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) )
11 dfss
 |-  ( S C_ X <-> S = ( S i^i X ) )
12 11 biimpi
 |-  ( S C_ X -> S = ( S i^i X ) )
13 incom
 |-  ( S i^i X ) = ( X i^i S )
14 12 13 eqtrdi
 |-  ( S C_ X -> S = ( X i^i S ) )
15 ineq1
 |-  ( X = ( x ( ball ` M ) r ) -> ( X i^i S ) = ( ( x ( ball ` M ) r ) i^i S ) )
16 14 15 sylan9eq
 |-  ( ( S C_ X /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) )
17 16 adantll
 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) )
18 17 adantlr
 |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) )
19 eqid
 |-  ( M |` ( S X. S ) ) = ( M |` ( S X. S ) )
20 19 blssp
 |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( x e. S /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )
21 20 an4s
 |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ ( S C_ X /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )
22 21 anassrs
 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )
23 22 adantr
 |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) )
24 18 23 eqtr4d
 |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )
25 24 ex
 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( X = ( x ( ball ` M ) r ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )
26 25 reximdva
 |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) -> ( E. r e. RR+ X = ( x ( ball ` M ) r ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )
27 26 imp
 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ E. r e. RR+ X = ( x ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )
28 10 27 syldan
 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )
29 28 an32s
 |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )
30 29 ex
 |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )
31 30 an32s
 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )
32 31 imp
 |-  ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )
33 32 an32s
 |-  ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) /\ x e. S ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )
34 33 ralrimiva
 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) )
35 2 34 jca
 |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )
36 isbnd
 |-  ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) )
37 36 anbi1i
 |-  ( ( M e. ( Bnd ` X ) /\ S C_ X ) <-> ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) )
38 isbnd
 |-  ( ( M |` ( S X. S ) ) e. ( Bnd ` S ) <-> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) )
39 35 37 38 3imtr4i
 |-  ( ( M e. ( Bnd ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Bnd ` S ) )