| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metres2 |  |-  ( ( M e. ( Met ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) ) | 
						
							| 2 | 1 | adantlr |  |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Met ` S ) ) | 
						
							| 3 |  | ssel2 |  |-  ( ( S C_ X /\ x e. S ) -> x e. X ) | 
						
							| 4 | 3 | ancoms |  |-  ( ( x e. S /\ S C_ X ) -> x e. X ) | 
						
							| 5 |  | oveq1 |  |-  ( y = x -> ( y ( ball ` M ) r ) = ( x ( ball ` M ) r ) ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( y = x -> ( X = ( y ( ball ` M ) r ) <-> X = ( x ( ball ` M ) r ) ) ) | 
						
							| 7 | 6 | rexbidv |  |-  ( y = x -> ( E. r e. RR+ X = ( y ( ball ` M ) r ) <-> E. r e. RR+ X = ( x ( ball ` M ) r ) ) ) | 
						
							| 8 | 7 | rspcva |  |-  ( ( x e. X /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) | 
						
							| 9 | 4 8 | sylan |  |-  ( ( ( x e. S /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) | 
						
							| 10 | 9 | adantlll |  |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ X = ( x ( ball ` M ) r ) ) | 
						
							| 11 |  | dfss |  |-  ( S C_ X <-> S = ( S i^i X ) ) | 
						
							| 12 | 11 | biimpi |  |-  ( S C_ X -> S = ( S i^i X ) ) | 
						
							| 13 |  | incom |  |-  ( S i^i X ) = ( X i^i S ) | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( S C_ X -> S = ( X i^i S ) ) | 
						
							| 15 |  | ineq1 |  |-  ( X = ( x ( ball ` M ) r ) -> ( X i^i S ) = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 16 | 14 15 | sylan9eq |  |-  ( ( S C_ X /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 17 | 16 | adantll |  |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 19 |  | eqid |  |-  ( M |` ( S X. S ) ) = ( M |` ( S X. S ) ) | 
						
							| 20 | 19 | blssp |  |-  ( ( ( M e. ( Met ` X ) /\ S C_ X ) /\ ( x e. S /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 21 | 20 | an4s |  |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ ( S C_ X /\ r e. RR+ ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 22 | 21 | anassrs |  |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> ( x ( ball ` ( M |` ( S X. S ) ) ) r ) = ( ( x ( ball ` M ) r ) i^i S ) ) | 
						
							| 24 | 18 23 | eqtr4d |  |-  ( ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) /\ X = ( x ( ball ` M ) r ) ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) | 
						
							| 25 | 24 | ex |  |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ r e. RR+ ) -> ( X = ( x ( ball ` M ) r ) -> S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) | 
						
							| 26 | 25 | reximdva |  |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) -> ( E. r e. RR+ X = ( x ( ball ` M ) r ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ E. r e. RR+ X = ( x ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) | 
						
							| 28 | 10 27 | syldan |  |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ S C_ X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) | 
						
							| 29 | 28 | an32s |  |-  ( ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) | 
						
							| 30 | 29 | ex |  |-  ( ( ( M e. ( Met ` X ) /\ x e. S ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) | 
						
							| 31 | 30 | an32s |  |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) -> ( S C_ X -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ x e. S ) /\ S C_ X ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) | 
						
							| 33 | 32 | an32s |  |-  ( ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) /\ x e. S ) -> E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) | 
						
							| 34 | 33 | ralrimiva |  |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) | 
						
							| 35 | 2 34 | jca |  |-  ( ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) -> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) | 
						
							| 36 |  | isbnd |  |-  ( M e. ( Bnd ` X ) <-> ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) ) | 
						
							| 37 | 36 | anbi1i |  |-  ( ( M e. ( Bnd ` X ) /\ S C_ X ) <-> ( ( M e. ( Met ` X ) /\ A. y e. X E. r e. RR+ X = ( y ( ball ` M ) r ) ) /\ S C_ X ) ) | 
						
							| 38 |  | isbnd |  |-  ( ( M |` ( S X. S ) ) e. ( Bnd ` S ) <-> ( ( M |` ( S X. S ) ) e. ( Met ` S ) /\ A. x e. S E. r e. RR+ S = ( x ( ball ` ( M |` ( S X. S ) ) ) r ) ) ) | 
						
							| 39 | 35 37 38 | 3imtr4i |  |-  ( ( M e. ( Bnd ` X ) /\ S C_ X ) -> ( M |` ( S X. S ) ) e. ( Bnd ` S ) ) |