| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metres2 | ⊢ ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 ) ) | 
						
							| 2 | 1 | adantlr | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 ) ) | 
						
							| 3 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  𝑋  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑋 ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑆  ⊆  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 )  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 )  ↔  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 )  ↔  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) ) | 
						
							| 8 | 7 | rspcva | ⊢ ( ( 𝑥  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) | 
						
							| 9 | 4 8 | sylan | ⊢ ( ( ( 𝑥  ∈  𝑆  ∧  𝑆  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) | 
						
							| 10 | 9 | adantlll | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) | 
						
							| 11 |  | dfss | ⊢ ( 𝑆  ⊆  𝑋  ↔  𝑆  =  ( 𝑆  ∩  𝑋 ) ) | 
						
							| 12 | 11 | biimpi | ⊢ ( 𝑆  ⊆  𝑋  →  𝑆  =  ( 𝑆  ∩  𝑋 ) ) | 
						
							| 13 |  | incom | ⊢ ( 𝑆  ∩  𝑋 )  =  ( 𝑋  ∩  𝑆 ) | 
						
							| 14 | 12 13 | eqtrdi | ⊢ ( 𝑆  ⊆  𝑋  →  𝑆  =  ( 𝑋  ∩  𝑆 ) ) | 
						
							| 15 |  | ineq1 | ⊢ ( 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  →  ( 𝑋  ∩  𝑆 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 16 | 14 15 | sylan9eq | ⊢ ( ( 𝑆  ⊆  𝑋  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 17 | 16 | adantll | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  =  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) | 
						
							| 20 | 19 | blssp | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑟  ∈  ℝ+ ) )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 21 | 20 | an4s | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  ( 𝑆  ⊆  𝑋  ∧  𝑟  ∈  ℝ+ ) )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 22 | 21 | anassrs | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 )  =  ( ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  ∩  𝑆 ) ) | 
						
							| 24 | 18 23 | eqtr4d | ⊢ ( ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  ∧  𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑟  ∈  ℝ+ )  →  ( 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  →  𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) ) | 
						
							| 26 | 25 | reximdva | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  →  ( ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) | 
						
							| 28 | 10 27 | syldan | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) | 
						
							| 29 | 28 | an32s | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) | 
						
							| 30 | 29 | ex | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑆 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  →  ( 𝑆  ⊆  𝑋  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) ) | 
						
							| 31 | 30 | an32s | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑥  ∈  𝑆 )  →  ( 𝑆  ⊆  𝑋  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑥  ∈  𝑆 )  ∧  𝑆  ⊆  𝑋 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) | 
						
							| 33 | 32 | an32s | ⊢ ( ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  ∧  𝑥  ∈  𝑆 )  →  ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) | 
						
							| 34 | 33 | ralrimiva | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ∀ 𝑥  ∈  𝑆 ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) | 
						
							| 35 | 2 34 | jca | ⊢ ( ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) ) | 
						
							| 36 |  | isbnd | ⊢ ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ↔  ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) ) ) | 
						
							| 37 | 36 | anbi1i | ⊢ ( ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  ↔  ( ( 𝑀  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑦  ∈  𝑋 ∃ 𝑟  ∈  ℝ+ 𝑋  =  ( 𝑦 ( ball ‘ 𝑀 ) 𝑟 ) )  ∧  𝑆  ⊆  𝑋 ) ) | 
						
							| 38 |  | isbnd | ⊢ ( ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Bnd ‘ 𝑆 )  ↔  ( ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Met ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∃ 𝑟  ∈  ℝ+ 𝑆  =  ( 𝑥 ( ball ‘ ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) ) ) 𝑟 ) ) ) | 
						
							| 39 | 35 37 38 | 3imtr4i | ⊢ ( ( 𝑀  ∈  ( Bnd ‘ 𝑋 )  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑀  ↾  ( 𝑆  ×  𝑆 ) )  ∈  ( Bnd ‘ 𝑆 ) ) |