Metamath Proof Explorer


Theorem bndss

Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion bndss MBndXSXMS×SBndS

Proof

Step Hyp Ref Expression
1 metres2 MMetXSXMS×SMetS
2 1 adantlr MMetXyXr+X=yballMrSXMS×SMetS
3 ssel2 SXxSxX
4 3 ancoms xSSXxX
5 oveq1 y=xyballMr=xballMr
6 5 eqeq2d y=xX=yballMrX=xballMr
7 6 rexbidv y=xr+X=yballMrr+X=xballMr
8 7 rspcva xXyXr+X=yballMrr+X=xballMr
9 4 8 sylan xSSXyXr+X=yballMrr+X=xballMr
10 9 adantlll MMetXxSSXyXr+X=yballMrr+X=xballMr
11 dfss SXS=SX
12 11 biimpi SXS=SX
13 incom SX=XS
14 12 13 eqtrdi SXS=XS
15 ineq1 X=xballMrXS=xballMrS
16 14 15 sylan9eq SXX=xballMrS=xballMrS
17 16 adantll MMetXxSSXX=xballMrS=xballMrS
18 17 adantlr MMetXxSSXr+X=xballMrS=xballMrS
19 eqid MS×S=MS×S
20 19 blssp MMetXSXxSr+xballMS×Sr=xballMrS
21 20 an4s MMetXxSSXr+xballMS×Sr=xballMrS
22 21 anassrs MMetXxSSXr+xballMS×Sr=xballMrS
23 22 adantr MMetXxSSXr+X=xballMrxballMS×Sr=xballMrS
24 18 23 eqtr4d MMetXxSSXr+X=xballMrS=xballMS×Sr
25 24 ex MMetXxSSXr+X=xballMrS=xballMS×Sr
26 25 reximdva MMetXxSSXr+X=xballMrr+S=xballMS×Sr
27 26 imp MMetXxSSXr+X=xballMrr+S=xballMS×Sr
28 10 27 syldan MMetXxSSXyXr+X=yballMrr+S=xballMS×Sr
29 28 an32s MMetXxSyXr+X=yballMrSXr+S=xballMS×Sr
30 29 ex MMetXxSyXr+X=yballMrSXr+S=xballMS×Sr
31 30 an32s MMetXyXr+X=yballMrxSSXr+S=xballMS×Sr
32 31 imp MMetXyXr+X=yballMrxSSXr+S=xballMS×Sr
33 32 an32s MMetXyXr+X=yballMrSXxSr+S=xballMS×Sr
34 33 ralrimiva MMetXyXr+X=yballMrSXxSr+S=xballMS×Sr
35 2 34 jca MMetXyXr+X=yballMrSXMS×SMetSxSr+S=xballMS×Sr
36 isbnd MBndXMMetXyXr+X=yballMr
37 36 anbi1i MBndXSXMMetXyXr+X=yballMrSX
38 isbnd MS×SBndSMS×SMetSxSr+S=xballMS×Sr
39 35 37 38 3imtr4i MBndXSXMS×SBndS