Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | bndss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metres2 | |
|
2 | 1 | adantlr | |
3 | ssel2 | |
|
4 | 3 | ancoms | |
5 | oveq1 | |
|
6 | 5 | eqeq2d | |
7 | 6 | rexbidv | |
8 | 7 | rspcva | |
9 | 4 8 | sylan | |
10 | 9 | adantlll | |
11 | dfss | |
|
12 | 11 | biimpi | |
13 | incom | |
|
14 | 12 13 | eqtrdi | |
15 | ineq1 | |
|
16 | 14 15 | sylan9eq | |
17 | 16 | adantll | |
18 | 17 | adantlr | |
19 | eqid | |
|
20 | 19 | blssp | |
21 | 20 | an4s | |
22 | 21 | anassrs | |
23 | 22 | adantr | |
24 | 18 23 | eqtr4d | |
25 | 24 | ex | |
26 | 25 | reximdva | |
27 | 26 | imp | |
28 | 10 27 | syldan | |
29 | 28 | an32s | |
30 | 29 | ex | |
31 | 30 | an32s | |
32 | 31 | imp | |
33 | 32 | an32s | |
34 | 33 | ralrimiva | |
35 | 2 34 | jca | |
36 | isbnd | |
|
37 | 36 | anbi1i | |
38 | isbnd | |
|
39 | 35 37 38 | 3imtr4i | |