| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brrestrict.1 |  |-  A e. _V | 
						
							| 2 |  | brrestrict.2 |  |-  B e. _V | 
						
							| 3 |  | brrestrict.3 |  |-  C e. _V | 
						
							| 4 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 5 | 4 3 | brco |  |-  ( <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C <-> E. x ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x /\ x Cap C ) ) | 
						
							| 6 | 4 | brtxp2 |  |-  ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x <-> E. a E. b ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) ) | 
						
							| 7 |  | 3anrot |  |-  ( ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) <-> ( <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b /\ x = <. a , b >. ) ) | 
						
							| 8 | 1 2 | br1steq |  |-  ( <. A , B >. 1st a <-> a = A ) | 
						
							| 9 |  | vex |  |-  b e. _V | 
						
							| 10 | 4 9 | brco |  |-  ( <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b <-> E. x ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) ) | 
						
							| 11 | 4 | brtxp2 |  |-  ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x <-> E. a E. b ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) ) | 
						
							| 12 |  | 3anrot |  |-  ( ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) <-> ( <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b /\ x = <. a , b >. ) ) | 
						
							| 13 | 1 2 | br2ndeq |  |-  ( <. A , B >. 2nd a <-> a = B ) | 
						
							| 14 | 4 9 | brco |  |-  ( <. A , B >. ( Range o. 1st ) b <-> E. x ( <. A , B >. 1st x /\ x Range b ) ) | 
						
							| 15 | 1 2 | br1steq |  |-  ( <. A , B >. 1st x <-> x = A ) | 
						
							| 16 | 15 | anbi1i |  |-  ( ( <. A , B >. 1st x /\ x Range b ) <-> ( x = A /\ x Range b ) ) | 
						
							| 17 | 16 | exbii |  |-  ( E. x ( <. A , B >. 1st x /\ x Range b ) <-> E. x ( x = A /\ x Range b ) ) | 
						
							| 18 |  | breq1 |  |-  ( x = A -> ( x Range b <-> A Range b ) ) | 
						
							| 19 | 1 18 | ceqsexv |  |-  ( E. x ( x = A /\ x Range b ) <-> A Range b ) | 
						
							| 20 | 17 19 | bitri |  |-  ( E. x ( <. A , B >. 1st x /\ x Range b ) <-> A Range b ) | 
						
							| 21 | 1 9 | brrange |  |-  ( A Range b <-> b = ran A ) | 
						
							| 22 | 14 20 21 | 3bitri |  |-  ( <. A , B >. ( Range o. 1st ) b <-> b = ran A ) | 
						
							| 23 |  | biid |  |-  ( x = <. a , b >. <-> x = <. a , b >. ) | 
						
							| 24 | 13 22 23 | 3anbi123i |  |-  ( ( <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b /\ x = <. a , b >. ) <-> ( a = B /\ b = ran A /\ x = <. a , b >. ) ) | 
						
							| 25 | 12 24 | bitri |  |-  ( ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) <-> ( a = B /\ b = ran A /\ x = <. a , b >. ) ) | 
						
							| 26 | 25 | 2exbii |  |-  ( E. a E. b ( x = <. a , b >. /\ <. A , B >. 2nd a /\ <. A , B >. ( Range o. 1st ) b ) <-> E. a E. b ( a = B /\ b = ran A /\ x = <. a , b >. ) ) | 
						
							| 27 | 1 | rnex |  |-  ran A e. _V | 
						
							| 28 |  | opeq1 |  |-  ( a = B -> <. a , b >. = <. B , b >. ) | 
						
							| 29 | 28 | eqeq2d |  |-  ( a = B -> ( x = <. a , b >. <-> x = <. B , b >. ) ) | 
						
							| 30 |  | opeq2 |  |-  ( b = ran A -> <. B , b >. = <. B , ran A >. ) | 
						
							| 31 | 30 | eqeq2d |  |-  ( b = ran A -> ( x = <. B , b >. <-> x = <. B , ran A >. ) ) | 
						
							| 32 | 2 27 29 31 | ceqsex2v |  |-  ( E. a E. b ( a = B /\ b = ran A /\ x = <. a , b >. ) <-> x = <. B , ran A >. ) | 
						
							| 33 | 11 26 32 | 3bitri |  |-  ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x <-> x = <. B , ran A >. ) | 
						
							| 34 | 33 | anbi1i |  |-  ( ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) <-> ( x = <. B , ran A >. /\ x Cart b ) ) | 
						
							| 35 | 34 | exbii |  |-  ( E. x ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) <-> E. x ( x = <. B , ran A >. /\ x Cart b ) ) | 
						
							| 36 |  | opex |  |-  <. B , ran A >. e. _V | 
						
							| 37 |  | breq1 |  |-  ( x = <. B , ran A >. -> ( x Cart b <-> <. B , ran A >. Cart b ) ) | 
						
							| 38 | 36 37 | ceqsexv |  |-  ( E. x ( x = <. B , ran A >. /\ x Cart b ) <-> <. B , ran A >. Cart b ) | 
						
							| 39 | 35 38 | bitri |  |-  ( E. x ( <. A , B >. ( 2nd (x) ( Range o. 1st ) ) x /\ x Cart b ) <-> <. B , ran A >. Cart b ) | 
						
							| 40 | 2 27 9 | brcart |  |-  ( <. B , ran A >. Cart b <-> b = ( B X. ran A ) ) | 
						
							| 41 | 10 39 40 | 3bitri |  |-  ( <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b <-> b = ( B X. ran A ) ) | 
						
							| 42 | 8 41 23 | 3anbi123i |  |-  ( ( <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b /\ x = <. a , b >. ) <-> ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) ) | 
						
							| 43 | 7 42 | bitri |  |-  ( ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) <-> ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) ) | 
						
							| 44 | 43 | 2exbii |  |-  ( E. a E. b ( x = <. a , b >. /\ <. A , B >. 1st a /\ <. A , B >. ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) b ) <-> E. a E. b ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) ) | 
						
							| 45 | 2 27 | xpex |  |-  ( B X. ran A ) e. _V | 
						
							| 46 |  | opeq1 |  |-  ( a = A -> <. a , b >. = <. A , b >. ) | 
						
							| 47 | 46 | eqeq2d |  |-  ( a = A -> ( x = <. a , b >. <-> x = <. A , b >. ) ) | 
						
							| 48 |  | opeq2 |  |-  ( b = ( B X. ran A ) -> <. A , b >. = <. A , ( B X. ran A ) >. ) | 
						
							| 49 | 48 | eqeq2d |  |-  ( b = ( B X. ran A ) -> ( x = <. A , b >. <-> x = <. A , ( B X. ran A ) >. ) ) | 
						
							| 50 | 1 45 47 49 | ceqsex2v |  |-  ( E. a E. b ( a = A /\ b = ( B X. ran A ) /\ x = <. a , b >. ) <-> x = <. A , ( B X. ran A ) >. ) | 
						
							| 51 | 6 44 50 | 3bitri |  |-  ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x <-> x = <. A , ( B X. ran A ) >. ) | 
						
							| 52 | 51 | anbi1i |  |-  ( ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x /\ x Cap C ) <-> ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) ) | 
						
							| 53 | 52 | exbii |  |-  ( E. x ( <. A , B >. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) x /\ x Cap C ) <-> E. x ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) ) | 
						
							| 54 | 5 53 | bitri |  |-  ( <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C <-> E. x ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) ) | 
						
							| 55 |  | opex |  |-  <. A , ( B X. ran A ) >. e. _V | 
						
							| 56 |  | breq1 |  |-  ( x = <. A , ( B X. ran A ) >. -> ( x Cap C <-> <. A , ( B X. ran A ) >. Cap C ) ) | 
						
							| 57 | 55 56 | ceqsexv |  |-  ( E. x ( x = <. A , ( B X. ran A ) >. /\ x Cap C ) <-> <. A , ( B X. ran A ) >. Cap C ) | 
						
							| 58 | 1 45 3 | brcap |  |-  ( <. A , ( B X. ran A ) >. Cap C <-> C = ( A i^i ( B X. ran A ) ) ) | 
						
							| 59 | 54 57 58 | 3bitri |  |-  ( <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C <-> C = ( A i^i ( B X. ran A ) ) ) | 
						
							| 60 |  | df-restrict |  |-  Restrict = ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) | 
						
							| 61 | 60 | breqi |  |-  ( <. A , B >. Restrict C <-> <. A , B >. ( Cap o. ( 1st (x) ( Cart o. ( 2nd (x) ( Range o. 1st ) ) ) ) ) C ) | 
						
							| 62 |  | dfres3 |  |-  ( A |` B ) = ( A i^i ( B X. ran A ) ) | 
						
							| 63 | 62 | eqeq2i |  |-  ( C = ( A |` B ) <-> C = ( A i^i ( B X. ran A ) ) ) | 
						
							| 64 | 59 61 63 | 3bitr4i |  |-  ( <. A , B >. Restrict C <-> C = ( A |` B ) ) |