Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemg12.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemg12.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdlemg12.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemg12.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemg12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemg12b.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL ) |
9 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) |
10 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> F e. T ) |
12 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S e. A ) |
13 |
1 4 5 6
|
ltrncnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ S e. A ) -> ( `' F ` S ) e. A ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( `' F ` S ) e. A ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15 4
|
atbase |
|- ( ( `' F ` S ) e. A -> ( `' F ` S ) e. ( Base ` K ) ) |
17 |
14 16
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( `' F ` S ) e. ( Base ` K ) ) |
18 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A ) |
19 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A ) |
20 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
21 |
8 18 19 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
22 |
15 1 5 6
|
ltrnle |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( `' F ` S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( `' F ` S ) .<_ ( P .\/ Q ) <-> ( F ` ( `' F ` S ) ) .<_ ( F ` ( P .\/ Q ) ) ) ) |
23 |
10 11 17 21 22
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( `' F ` S ) .<_ ( P .\/ Q ) <-> ( F ` ( `' F ` S ) ) .<_ ( F ` ( P .\/ Q ) ) ) ) |
24 |
15 5 6
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
25 |
10 11 24
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
26 |
15 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
27 |
12 26
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S e. ( Base ` K ) ) |
28 |
|
f1ocnvfv2 |
|- ( ( F : ( Base ` K ) -1-1-onto-> ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( F ` ( `' F ` S ) ) = S ) |
29 |
25 27 28
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( `' F ` S ) ) = S ) |
30 |
15 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
31 |
18 30
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. ( Base ` K ) ) |
32 |
15 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
33 |
19 32
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. ( Base ` K ) ) |
34 |
15 2 5 6
|
ltrnj |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( F ` ( P .\/ Q ) ) = ( ( F ` P ) .\/ ( F ` Q ) ) ) |
35 |
10 11 31 33 34
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( F ` ( P .\/ Q ) ) = ( ( F ` P ) .\/ ( F ` Q ) ) ) |
36 |
29 35
|
breq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` ( `' F ` S ) ) .<_ ( F ` ( P .\/ Q ) ) <-> S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) |
37 |
23 36
|
bitr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) <-> ( `' F ` S ) .<_ ( P .\/ Q ) ) ) |
38 |
9 37
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( `' F ` S ) .<_ ( P .\/ Q ) ) |
39 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) |
40 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q ) |
41 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
42 |
1 4 5 6
|
ltrncnvel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( `' F ` S ) e. A /\ -. ( `' F ` S ) .<_ W ) ) |
43 |
10 11 41 42
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( `' F ` S ) e. A /\ -. ( `' F ` S ) .<_ W ) ) |
44 |
1 2 4
|
cdleme0nex |
|- ( ( ( K e. HL /\ ( `' F ` S ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( ( `' F ` S ) e. A /\ -. ( `' F ` S ) .<_ W ) ) -> ( ( `' F ` S ) = P \/ ( `' F ` S ) = Q ) ) |
45 |
8 38 39 18 19 40 43 44
|
syl331anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( `' F ` S ) = P \/ ( `' F ` S ) = Q ) ) |
46 |
|
f1ocnvfvb |
|- ( ( F : ( Base ` K ) -1-1-onto-> ( Base ` K ) /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( F ` P ) = S <-> ( `' F ` S ) = P ) ) |
47 |
25 31 27 46
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` P ) = S <-> ( `' F ` S ) = P ) ) |
48 |
|
eqcom |
|- ( ( F ` P ) = S <-> S = ( F ` P ) ) |
49 |
47 48
|
bitr3di |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( `' F ` S ) = P <-> S = ( F ` P ) ) ) |
50 |
|
f1ocnvfvb |
|- ( ( F : ( Base ` K ) -1-1-onto-> ( Base ` K ) /\ Q e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( F ` Q ) = S <-> ( `' F ` S ) = Q ) ) |
51 |
25 33 27 50
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( F ` Q ) = S <-> ( `' F ` S ) = Q ) ) |
52 |
|
eqcom |
|- ( ( F ` Q ) = S <-> S = ( F ` Q ) ) |
53 |
51 52
|
bitr3di |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( `' F ` S ) = Q <-> S = ( F ` Q ) ) ) |
54 |
49 53
|
orbi12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( ( `' F ` S ) = P \/ ( `' F ` S ) = Q ) <-> ( S = ( F ` P ) \/ S = ( F ` Q ) ) ) ) |
55 |
45 54
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( F e. T /\ G e. T ) /\ ( P =/= Q /\ S .<_ ( ( F ` P ) .\/ ( F ` Q ) ) ) ) /\ ( ( G ` P ) =/= P /\ ( R ` G ) .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S = ( F ` P ) \/ S = ( F ` Q ) ) ) |