Metamath Proof Explorer


Theorem cdlemg17h

Description: TODO: fix comment. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17h K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r S = F P S = F Q

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL
9 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ F P ˙ F Q
10 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
11 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F T
12 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r S A
13 1 4 5 6 ltrncnvat K HL W H F T S A F -1 S A
14 10 11 12 13 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S A
15 eqid Base K = Base K
16 15 4 atbase F -1 S A F -1 S Base K
17 14 16 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S Base K
18 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A
19 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A
20 15 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
21 8 18 19 20 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ Q Base K
22 15 1 5 6 ltrnle K HL W H F T F -1 S Base K P ˙ Q Base K F -1 S ˙ P ˙ Q F F -1 S ˙ F P ˙ Q
23 10 11 17 21 22 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S ˙ P ˙ Q F F -1 S ˙ F P ˙ Q
24 15 5 6 ltrn1o K HL W H F T F : Base K 1-1 onto Base K
25 10 11 24 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F : Base K 1-1 onto Base K
26 15 4 atbase S A S Base K
27 12 26 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r S Base K
28 f1ocnvfv2 F : Base K 1-1 onto Base K S Base K F F -1 S = S
29 25 27 28 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F F -1 S = S
30 15 4 atbase P A P Base K
31 18 30 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Base K
32 15 4 atbase Q A Q Base K
33 19 32 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q Base K
34 15 2 5 6 ltrnj K HL W H F T P Base K Q Base K F P ˙ Q = F P ˙ F Q
35 10 11 31 33 34 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P ˙ Q = F P ˙ F Q
36 29 35 breq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F F -1 S ˙ F P ˙ Q S ˙ F P ˙ F Q
37 23 36 bitr2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r S ˙ F P ˙ F Q F -1 S ˙ P ˙ Q
38 9 37 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S ˙ P ˙ Q
39 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
40 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
41 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r S A ¬ S ˙ W
42 1 4 5 6 ltrncnvel K HL W H F T S A ¬ S ˙ W F -1 S A ¬ F -1 S ˙ W
43 10 11 41 42 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S A ¬ F -1 S ˙ W
44 1 2 4 cdleme0nex K HL F -1 S ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A Q A P Q F -1 S A ¬ F -1 S ˙ W F -1 S = P F -1 S = Q
45 8 38 39 18 19 40 43 44 syl331anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S = P F -1 S = Q
46 f1ocnvfvb F : Base K 1-1 onto Base K P Base K S Base K F P = S F -1 S = P
47 25 31 27 46 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P = S F -1 S = P
48 eqcom F P = S S = F P
49 47 48 bitr3di K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S = P S = F P
50 f1ocnvfvb F : Base K 1-1 onto Base K Q Base K S Base K F Q = S F -1 S = Q
51 25 33 27 50 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F Q = S F -1 S = Q
52 eqcom F Q = S S = F Q
53 51 52 bitr3di K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S = Q S = F Q
54 49 53 orbi12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F -1 S = P F -1 S = Q S = F P S = F Q
55 45 54 mpbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W F T G T P Q S ˙ F P ˙ F Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r S = F P S = F Q