| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
simp11l |
|
| 9 |
|
simp23r |
|
| 10 |
|
simp11 |
|
| 11 |
|
simp22l |
|
| 12 |
|
simp21l |
|
| 13 |
1 4 5 6
|
ltrncnvat |
|
| 14 |
10 11 12 13
|
syl3anc |
|
| 15 |
|
eqid |
|
| 16 |
15 4
|
atbase |
|
| 17 |
14 16
|
syl |
|
| 18 |
|
simp12l |
|
| 19 |
|
simp13l |
|
| 20 |
15 2 4
|
hlatjcl |
|
| 21 |
8 18 19 20
|
syl3anc |
|
| 22 |
15 1 5 6
|
ltrnle |
|
| 23 |
10 11 17 21 22
|
syl112anc |
|
| 24 |
15 5 6
|
ltrn1o |
|
| 25 |
10 11 24
|
syl2anc |
|
| 26 |
15 4
|
atbase |
|
| 27 |
12 26
|
syl |
|
| 28 |
|
f1ocnvfv2 |
|
| 29 |
25 27 28
|
syl2anc |
|
| 30 |
15 4
|
atbase |
|
| 31 |
18 30
|
syl |
|
| 32 |
15 4
|
atbase |
|
| 33 |
19 32
|
syl |
|
| 34 |
15 2 5 6
|
ltrnj |
|
| 35 |
10 11 31 33 34
|
syl112anc |
|
| 36 |
29 35
|
breq12d |
|
| 37 |
23 36
|
bitr2d |
|
| 38 |
9 37
|
mpbid |
|
| 39 |
|
simp33 |
|
| 40 |
|
simp23l |
|
| 41 |
|
simp21 |
|
| 42 |
1 4 5 6
|
ltrncnvel |
|
| 43 |
10 11 41 42
|
syl3anc |
|
| 44 |
1 2 4
|
cdleme0nex |
|
| 45 |
8 38 39 18 19 40 43 44
|
syl331anc |
|
| 46 |
|
f1ocnvfvb |
|
| 47 |
25 31 27 46
|
syl3anc |
|
| 48 |
|
eqcom |
|
| 49 |
47 48
|
bitr3di |
|
| 50 |
|
f1ocnvfvb |
|
| 51 |
25 33 27 50
|
syl3anc |
|
| 52 |
|
eqcom |
|
| 53 |
51 52
|
bitr3di |
|
| 54 |
49 53
|
orbi12d |
|
| 55 |
45 54
|
mpbid |
|