Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp11l |
|
9 |
|
simp23r |
|
10 |
|
simp11 |
|
11 |
|
simp22l |
|
12 |
|
simp21l |
|
13 |
1 4 5 6
|
ltrncnvat |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
|
eqid |
|
16 |
15 4
|
atbase |
|
17 |
14 16
|
syl |
|
18 |
|
simp12l |
|
19 |
|
simp13l |
|
20 |
15 2 4
|
hlatjcl |
|
21 |
8 18 19 20
|
syl3anc |
|
22 |
15 1 5 6
|
ltrnle |
|
23 |
10 11 17 21 22
|
syl112anc |
|
24 |
15 5 6
|
ltrn1o |
|
25 |
10 11 24
|
syl2anc |
|
26 |
15 4
|
atbase |
|
27 |
12 26
|
syl |
|
28 |
|
f1ocnvfv2 |
|
29 |
25 27 28
|
syl2anc |
|
30 |
15 4
|
atbase |
|
31 |
18 30
|
syl |
|
32 |
15 4
|
atbase |
|
33 |
19 32
|
syl |
|
34 |
15 2 5 6
|
ltrnj |
|
35 |
10 11 31 33 34
|
syl112anc |
|
36 |
29 35
|
breq12d |
|
37 |
23 36
|
bitr2d |
|
38 |
9 37
|
mpbid |
|
39 |
|
simp33 |
|
40 |
|
simp23l |
|
41 |
|
simp21 |
|
42 |
1 4 5 6
|
ltrncnvel |
|
43 |
10 11 41 42
|
syl3anc |
|
44 |
1 2 4
|
cdleme0nex |
|
45 |
8 38 39 18 19 40 43 44
|
syl331anc |
|
46 |
|
f1ocnvfvb |
|
47 |
25 31 27 46
|
syl3anc |
|
48 |
|
eqcom |
|
49 |
47 48
|
bitr3di |
|
50 |
|
f1ocnvfvb |
|
51 |
25 33 27 50
|
syl3anc |
|
52 |
|
eqcom |
|
53 |
51 52
|
bitr3di |
|
54 |
49 53
|
orbi12d |
|
55 |
45 54
|
mpbid |
|