| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlklem2.f |
|- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
| 2 |
|
simpr |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> x = ( ( # ` P ) - 2 ) ) |
| 3 |
|
nn0z |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
| 4 |
|
2z |
|- 2 e. ZZ |
| 5 |
3 4
|
jctir |
|- ( ( # ` P ) e. NN0 -> ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) ) |
| 6 |
|
zsubcl |
|- ( ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 7 |
5 6
|
syl |
|- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 8 |
7
|
adantr |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 9 |
8
|
adantr |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 10 |
2 9
|
eqeltrd |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> x e. ZZ ) |
| 11 |
10
|
ex |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x = ( ( # ` P ) - 2 ) -> x e. ZZ ) ) |
| 12 |
|
zre |
|- ( x e. ZZ -> x e. RR ) |
| 13 |
|
nn0re |
|- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
| 14 |
|
2re |
|- 2 e. RR |
| 15 |
14
|
a1i |
|- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 16 |
13 15
|
resubcld |
|- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. RR ) |
| 17 |
16
|
adantr |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. RR ) |
| 18 |
|
lttri3 |
|- ( ( x e. RR /\ ( ( # ` P ) - 2 ) e. RR ) -> ( x = ( ( # ` P ) - 2 ) <-> ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) ) ) |
| 19 |
12 17 18
|
syl2anr |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x e. ZZ ) -> ( x = ( ( # ` P ) - 2 ) <-> ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) ) ) |
| 20 |
|
simpl |
|- ( ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) -> -. x < ( ( # ` P ) - 2 ) ) |
| 21 |
19 20
|
biimtrdi |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x e. ZZ ) -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) |
| 22 |
21
|
ex |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x e. ZZ -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) ) |
| 23 |
11 22
|
syld |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x = ( ( # ` P ) - 2 ) -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) ) |
| 24 |
23
|
com13 |
|- ( x = ( ( # ` P ) - 2 ) -> ( x = ( ( # ` P ) - 2 ) -> ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> -. x < ( ( # ` P ) - 2 ) ) ) ) |
| 25 |
24
|
pm2.43i |
|- ( x = ( ( # ` P ) - 2 ) -> ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> -. x < ( ( # ` P ) - 2 ) ) ) |
| 26 |
25
|
impcom |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> -. x < ( ( # ` P ) - 2 ) ) |
| 27 |
26
|
iffalsed |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) |
| 28 |
|
fveq2 |
|- ( x = ( ( # ` P ) - 2 ) -> ( P ` x ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
| 29 |
28
|
adantl |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( P ` x ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
| 30 |
29
|
preq1d |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> { ( P ` x ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
| 31 |
30
|
fveq2d |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 32 |
27 31
|
eqtrd |
|- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 33 |
5
|
adantr |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) ) |
| 34 |
33 6
|
syl |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 35 |
13 15
|
subge0d |
|- ( ( # ` P ) e. NN0 -> ( 0 <_ ( ( # ` P ) - 2 ) <-> 2 <_ ( # ` P ) ) ) |
| 36 |
35
|
biimpar |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 0 <_ ( ( # ` P ) - 2 ) ) |
| 37 |
|
elnn0z |
|- ( ( ( # ` P ) - 2 ) e. NN0 <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) |
| 38 |
34 36 37
|
sylanbrc |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. NN0 ) |
| 39 |
|
nn0ge2m1nn |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 1 ) e. NN ) |
| 40 |
|
1red |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 1 e. RR ) |
| 41 |
14
|
a1i |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 e. RR ) |
| 42 |
13
|
adantr |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. RR ) |
| 43 |
|
1lt2 |
|- 1 < 2 |
| 44 |
43
|
a1i |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 1 < 2 ) |
| 45 |
40 41 42 44
|
ltsub2dd |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) < ( ( # ` P ) - 1 ) ) |
| 46 |
|
elfzo0 |
|- ( ( ( # ` P ) - 2 ) e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> ( ( ( # ` P ) - 2 ) e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ ( ( # ` P ) - 2 ) < ( ( # ` P ) - 1 ) ) ) |
| 47 |
38 39 45 46
|
syl3anbrc |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 48 |
|
fvexd |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) e. _V ) |
| 49 |
1 32 47 48
|
fvmptd2 |
|- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |