| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlklem2.f |
|
| 2 |
|
simpr |
|
| 3 |
|
nn0z |
|
| 4 |
|
2z |
|
| 5 |
3 4
|
jctir |
|
| 6 |
|
zsubcl |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
adantr |
|
| 10 |
2 9
|
eqeltrd |
|
| 11 |
10
|
ex |
|
| 12 |
|
zre |
|
| 13 |
|
nn0re |
|
| 14 |
|
2re |
|
| 15 |
14
|
a1i |
|
| 16 |
13 15
|
resubcld |
|
| 17 |
16
|
adantr |
|
| 18 |
|
lttri3 |
|
| 19 |
12 17 18
|
syl2anr |
|
| 20 |
|
simpl |
|
| 21 |
19 20
|
biimtrdi |
|
| 22 |
21
|
ex |
|
| 23 |
11 22
|
syld |
|
| 24 |
23
|
com13 |
|
| 25 |
24
|
pm2.43i |
|
| 26 |
25
|
impcom |
|
| 27 |
26
|
iffalsed |
|
| 28 |
|
fveq2 |
|
| 29 |
28
|
adantl |
|
| 30 |
29
|
preq1d |
|
| 31 |
30
|
fveq2d |
|
| 32 |
27 31
|
eqtrd |
|
| 33 |
5
|
adantr |
|
| 34 |
33 6
|
syl |
|
| 35 |
13 15
|
subge0d |
|
| 36 |
35
|
biimpar |
|
| 37 |
|
elnn0z |
|
| 38 |
34 36 37
|
sylanbrc |
|
| 39 |
|
nn0ge2m1nn |
|
| 40 |
|
1red |
|
| 41 |
14
|
a1i |
|
| 42 |
13
|
adantr |
|
| 43 |
|
1lt2 |
|
| 44 |
43
|
a1i |
|
| 45 |
40 41 42 44
|
ltsub2dd |
|
| 46 |
|
elfzo0 |
|
| 47 |
38 39 45 46
|
syl3anbrc |
|
| 48 |
|
fvexd |
|
| 49 |
1 32 47 48
|
fvmptd2 |
|