| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h |  |-  H e. _V | 
						
							| 2 |  | coinflip.t |  |-  T e. _V | 
						
							| 3 |  | coinflip.th |  |-  H =/= T | 
						
							| 4 |  | coinflip.2 |  |-  P = ( ( # |` ~P { H , T } ) oFC / 2 ) | 
						
							| 5 |  | coinflip.3 |  |-  X = { <. H , 1 >. , <. T , 0 >. } | 
						
							| 6 |  | 1ex |  |-  1 e. _V | 
						
							| 7 |  | c0ex |  |-  0 e. _V | 
						
							| 8 | 1 2 6 7 | fpr |  |-  ( H =/= T -> { <. H , 1 >. , <. T , 0 >. } : { H , T } --> { 1 , 0 } ) | 
						
							| 9 | 3 8 | ax-mp |  |-  { <. H , 1 >. , <. T , 0 >. } : { H , T } --> { 1 , 0 } | 
						
							| 10 | 5 | feq1i |  |-  ( X : { H , T } --> { 1 , 0 } <-> { <. H , 1 >. , <. T , 0 >. } : { H , T } --> { 1 , 0 } ) | 
						
							| 11 | 9 10 | mpbir |  |-  X : { H , T } --> { 1 , 0 } | 
						
							| 12 | 1 2 3 4 5 | coinflipuniv |  |-  U. dom P = { H , T } | 
						
							| 13 | 12 | feq2i |  |-  ( X : U. dom P --> { 1 , 0 } <-> X : { H , T } --> { 1 , 0 } ) | 
						
							| 14 | 11 13 | mpbir |  |-  X : U. dom P --> { 1 , 0 } | 
						
							| 15 |  | 1re |  |-  1 e. RR | 
						
							| 16 |  | 0re |  |-  0 e. RR | 
						
							| 17 | 15 16 | pm3.2i |  |-  ( 1 e. RR /\ 0 e. RR ) | 
						
							| 18 | 6 7 | prss |  |-  ( ( 1 e. RR /\ 0 e. RR ) <-> { 1 , 0 } C_ RR ) | 
						
							| 19 | 17 18 | mpbi |  |-  { 1 , 0 } C_ RR | 
						
							| 20 |  | fss |  |-  ( ( X : U. dom P --> { 1 , 0 } /\ { 1 , 0 } C_ RR ) -> X : U. dom P --> RR ) | 
						
							| 21 | 14 19 20 | mp2an |  |-  X : U. dom P --> RR | 
						
							| 22 |  | imassrn |  |-  ( `' X " y ) C_ ran `' X | 
						
							| 23 |  | dfdm4 |  |-  dom X = ran `' X | 
						
							| 24 | 11 | fdmi |  |-  dom X = { H , T } | 
						
							| 25 | 23 24 | eqtr3i |  |-  ran `' X = { H , T } | 
						
							| 26 | 22 25 | sseqtri |  |-  ( `' X " y ) C_ { H , T } | 
						
							| 27 | 1 2 3 4 5 | coinflipspace |  |-  dom P = ~P { H , T } | 
						
							| 28 | 27 | eleq2i |  |-  ( ( `' X " y ) e. dom P <-> ( `' X " y ) e. ~P { H , T } ) | 
						
							| 29 |  | prex |  |-  { <. H , 1 >. , <. T , 0 >. } e. _V | 
						
							| 30 | 5 29 | eqeltri |  |-  X e. _V | 
						
							| 31 |  | cnvexg |  |-  ( X e. _V -> `' X e. _V ) | 
						
							| 32 |  | imaexg |  |-  ( `' X e. _V -> ( `' X " y ) e. _V ) | 
						
							| 33 | 30 31 32 | mp2b |  |-  ( `' X " y ) e. _V | 
						
							| 34 | 33 | elpw |  |-  ( ( `' X " y ) e. ~P { H , T } <-> ( `' X " y ) C_ { H , T } ) | 
						
							| 35 | 28 34 | bitr2i |  |-  ( ( `' X " y ) C_ { H , T } <-> ( `' X " y ) e. dom P ) | 
						
							| 36 | 35 | biimpi |  |-  ( ( `' X " y ) C_ { H , T } -> ( `' X " y ) e. dom P ) | 
						
							| 37 | 26 36 | mp1i |  |-  ( y e. BrSiga -> ( `' X " y ) e. dom P ) | 
						
							| 38 | 37 | rgen |  |-  A. y e. BrSiga ( `' X " y ) e. dom P | 
						
							| 39 | 1 2 3 4 5 | coinflipprob |  |-  P e. Prob | 
						
							| 40 | 39 | a1i |  |-  ( H e. _V -> P e. Prob ) | 
						
							| 41 | 40 | isrrvv |  |-  ( H e. _V -> ( X e. ( rRndVar ` P ) <-> ( X : U. dom P --> RR /\ A. y e. BrSiga ( `' X " y ) e. dom P ) ) ) | 
						
							| 42 | 1 41 | ax-mp |  |-  ( X e. ( rRndVar ` P ) <-> ( X : U. dom P --> RR /\ A. y e. BrSiga ( `' X " y ) e. dom P ) ) | 
						
							| 43 | 21 38 42 | mpbir2an |  |-  X e. ( rRndVar ` P ) |