| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coinflip.h |
|- H e. _V |
| 2 |
|
coinflip.t |
|- T e. _V |
| 3 |
|
coinflip.th |
|- H =/= T |
| 4 |
|
coinflip.2 |
|- P = ( ( # |` ~P { H , T } ) oFC / 2 ) |
| 5 |
|
coinflip.3 |
|- X = { <. H , 1 >. , <. T , 0 >. } |
| 6 |
|
1ex |
|- 1 e. _V |
| 7 |
|
c0ex |
|- 0 e. _V |
| 8 |
1 2 6 7
|
fpr |
|- ( H =/= T -> { <. H , 1 >. , <. T , 0 >. } : { H , T } --> { 1 , 0 } ) |
| 9 |
3 8
|
ax-mp |
|- { <. H , 1 >. , <. T , 0 >. } : { H , T } --> { 1 , 0 } |
| 10 |
5
|
feq1i |
|- ( X : { H , T } --> { 1 , 0 } <-> { <. H , 1 >. , <. T , 0 >. } : { H , T } --> { 1 , 0 } ) |
| 11 |
9 10
|
mpbir |
|- X : { H , T } --> { 1 , 0 } |
| 12 |
1 2 3 4 5
|
coinflipuniv |
|- U. dom P = { H , T } |
| 13 |
12
|
feq2i |
|- ( X : U. dom P --> { 1 , 0 } <-> X : { H , T } --> { 1 , 0 } ) |
| 14 |
11 13
|
mpbir |
|- X : U. dom P --> { 1 , 0 } |
| 15 |
|
1re |
|- 1 e. RR |
| 16 |
|
0re |
|- 0 e. RR |
| 17 |
15 16
|
pm3.2i |
|- ( 1 e. RR /\ 0 e. RR ) |
| 18 |
6 7
|
prss |
|- ( ( 1 e. RR /\ 0 e. RR ) <-> { 1 , 0 } C_ RR ) |
| 19 |
17 18
|
mpbi |
|- { 1 , 0 } C_ RR |
| 20 |
|
fss |
|- ( ( X : U. dom P --> { 1 , 0 } /\ { 1 , 0 } C_ RR ) -> X : U. dom P --> RR ) |
| 21 |
14 19 20
|
mp2an |
|- X : U. dom P --> RR |
| 22 |
|
imassrn |
|- ( `' X " y ) C_ ran `' X |
| 23 |
|
dfdm4 |
|- dom X = ran `' X |
| 24 |
11
|
fdmi |
|- dom X = { H , T } |
| 25 |
23 24
|
eqtr3i |
|- ran `' X = { H , T } |
| 26 |
22 25
|
sseqtri |
|- ( `' X " y ) C_ { H , T } |
| 27 |
1 2 3 4 5
|
coinflipspace |
|- dom P = ~P { H , T } |
| 28 |
27
|
eleq2i |
|- ( ( `' X " y ) e. dom P <-> ( `' X " y ) e. ~P { H , T } ) |
| 29 |
|
prex |
|- { <. H , 1 >. , <. T , 0 >. } e. _V |
| 30 |
5 29
|
eqeltri |
|- X e. _V |
| 31 |
|
cnvexg |
|- ( X e. _V -> `' X e. _V ) |
| 32 |
|
imaexg |
|- ( `' X e. _V -> ( `' X " y ) e. _V ) |
| 33 |
30 31 32
|
mp2b |
|- ( `' X " y ) e. _V |
| 34 |
33
|
elpw |
|- ( ( `' X " y ) e. ~P { H , T } <-> ( `' X " y ) C_ { H , T } ) |
| 35 |
28 34
|
bitr2i |
|- ( ( `' X " y ) C_ { H , T } <-> ( `' X " y ) e. dom P ) |
| 36 |
35
|
biimpi |
|- ( ( `' X " y ) C_ { H , T } -> ( `' X " y ) e. dom P ) |
| 37 |
26 36
|
mp1i |
|- ( y e. BrSiga -> ( `' X " y ) e. dom P ) |
| 38 |
37
|
rgen |
|- A. y e. BrSiga ( `' X " y ) e. dom P |
| 39 |
1 2 3 4 5
|
coinflipprob |
|- P e. Prob |
| 40 |
39
|
a1i |
|- ( H e. _V -> P e. Prob ) |
| 41 |
40
|
isrrvv |
|- ( H e. _V -> ( X e. ( rRndVar ` P ) <-> ( X : U. dom P --> RR /\ A. y e. BrSiga ( `' X " y ) e. dom P ) ) ) |
| 42 |
1 41
|
ax-mp |
|- ( X e. ( rRndVar ` P ) <-> ( X : U. dom P --> RR /\ A. y e. BrSiga ( `' X " y ) e. dom P ) ) |
| 43 |
21 38 42
|
mpbir2an |
|- X e. ( rRndVar ` P ) |