| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h | ⊢ 𝐻  ∈  V | 
						
							| 2 |  | coinflip.t | ⊢ 𝑇  ∈  V | 
						
							| 3 |  | coinflip.th | ⊢ 𝐻  ≠  𝑇 | 
						
							| 4 |  | coinflip.2 | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) | 
						
							| 5 |  | coinflip.3 | ⊢ 𝑋  =  { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } | 
						
							| 6 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 7 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 8 | 1 2 6 7 | fpr | ⊢ ( 𝐻  ≠  𝑇  →  { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } : { 𝐻 ,  𝑇 } ⟶ { 1 ,  0 } ) | 
						
							| 9 | 3 8 | ax-mp | ⊢ { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } : { 𝐻 ,  𝑇 } ⟶ { 1 ,  0 } | 
						
							| 10 | 5 | feq1i | ⊢ ( 𝑋 : { 𝐻 ,  𝑇 } ⟶ { 1 ,  0 }  ↔  { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } : { 𝐻 ,  𝑇 } ⟶ { 1 ,  0 } ) | 
						
							| 11 | 9 10 | mpbir | ⊢ 𝑋 : { 𝐻 ,  𝑇 } ⟶ { 1 ,  0 } | 
						
							| 12 | 1 2 3 4 5 | coinflipuniv | ⊢ ∪  dom  𝑃  =  { 𝐻 ,  𝑇 } | 
						
							| 13 | 12 | feq2i | ⊢ ( 𝑋 : ∪  dom  𝑃 ⟶ { 1 ,  0 }  ↔  𝑋 : { 𝐻 ,  𝑇 } ⟶ { 1 ,  0 } ) | 
						
							| 14 | 11 13 | mpbir | ⊢ 𝑋 : ∪  dom  𝑃 ⟶ { 1 ,  0 } | 
						
							| 15 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 16 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 17 | 15 16 | pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  0  ∈  ℝ ) | 
						
							| 18 | 6 7 | prss | ⊢ ( ( 1  ∈  ℝ  ∧  0  ∈  ℝ )  ↔  { 1 ,  0 }  ⊆  ℝ ) | 
						
							| 19 | 17 18 | mpbi | ⊢ { 1 ,  0 }  ⊆  ℝ | 
						
							| 20 |  | fss | ⊢ ( ( 𝑋 : ∪  dom  𝑃 ⟶ { 1 ,  0 }  ∧  { 1 ,  0 }  ⊆  ℝ )  →  𝑋 : ∪  dom  𝑃 ⟶ ℝ ) | 
						
							| 21 | 14 19 20 | mp2an | ⊢ 𝑋 : ∪  dom  𝑃 ⟶ ℝ | 
						
							| 22 |  | imassrn | ⊢ ( ◡ 𝑋  “  𝑦 )  ⊆  ran  ◡ 𝑋 | 
						
							| 23 |  | dfdm4 | ⊢ dom  𝑋  =  ran  ◡ 𝑋 | 
						
							| 24 | 11 | fdmi | ⊢ dom  𝑋  =  { 𝐻 ,  𝑇 } | 
						
							| 25 | 23 24 | eqtr3i | ⊢ ran  ◡ 𝑋  =  { 𝐻 ,  𝑇 } | 
						
							| 26 | 22 25 | sseqtri | ⊢ ( ◡ 𝑋  “  𝑦 )  ⊆  { 𝐻 ,  𝑇 } | 
						
							| 27 | 1 2 3 4 5 | coinflipspace | ⊢ dom  𝑃  =  𝒫  { 𝐻 ,  𝑇 } | 
						
							| 28 | 27 | eleq2i | ⊢ ( ( ◡ 𝑋  “  𝑦 )  ∈  dom  𝑃  ↔  ( ◡ 𝑋  “  𝑦 )  ∈  𝒫  { 𝐻 ,  𝑇 } ) | 
						
							| 29 |  | prex | ⊢ { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 }  ∈  V | 
						
							| 30 | 5 29 | eqeltri | ⊢ 𝑋  ∈  V | 
						
							| 31 |  | cnvexg | ⊢ ( 𝑋  ∈  V  →  ◡ 𝑋  ∈  V ) | 
						
							| 32 |  | imaexg | ⊢ ( ◡ 𝑋  ∈  V  →  ( ◡ 𝑋  “  𝑦 )  ∈  V ) | 
						
							| 33 | 30 31 32 | mp2b | ⊢ ( ◡ 𝑋  “  𝑦 )  ∈  V | 
						
							| 34 | 33 | elpw | ⊢ ( ( ◡ 𝑋  “  𝑦 )  ∈  𝒫  { 𝐻 ,  𝑇 }  ↔  ( ◡ 𝑋  “  𝑦 )  ⊆  { 𝐻 ,  𝑇 } ) | 
						
							| 35 | 28 34 | bitr2i | ⊢ ( ( ◡ 𝑋  “  𝑦 )  ⊆  { 𝐻 ,  𝑇 }  ↔  ( ◡ 𝑋  “  𝑦 )  ∈  dom  𝑃 ) | 
						
							| 36 | 35 | biimpi | ⊢ ( ( ◡ 𝑋  “  𝑦 )  ⊆  { 𝐻 ,  𝑇 }  →  ( ◡ 𝑋  “  𝑦 )  ∈  dom  𝑃 ) | 
						
							| 37 | 26 36 | mp1i | ⊢ ( 𝑦  ∈  𝔅ℝ  →  ( ◡ 𝑋  “  𝑦 )  ∈  dom  𝑃 ) | 
						
							| 38 | 37 | rgen | ⊢ ∀ 𝑦  ∈  𝔅ℝ ( ◡ 𝑋  “  𝑦 )  ∈  dom  𝑃 | 
						
							| 39 | 1 2 3 4 5 | coinflipprob | ⊢ 𝑃  ∈  Prob | 
						
							| 40 | 39 | a1i | ⊢ ( 𝐻  ∈  V  →  𝑃  ∈  Prob ) | 
						
							| 41 | 40 | isrrvv | ⊢ ( 𝐻  ∈  V  →  ( 𝑋  ∈  ( rRndVar ‘ 𝑃 )  ↔  ( 𝑋 : ∪  dom  𝑃 ⟶ ℝ  ∧  ∀ 𝑦  ∈  𝔅ℝ ( ◡ 𝑋  “  𝑦 )  ∈  dom  𝑃 ) ) ) | 
						
							| 42 | 1 41 | ax-mp | ⊢ ( 𝑋  ∈  ( rRndVar ‘ 𝑃 )  ↔  ( 𝑋 : ∪  dom  𝑃 ⟶ ℝ  ∧  ∀ 𝑦  ∈  𝔅ℝ ( ◡ 𝑋  “  𝑦 )  ∈  dom  𝑃 ) ) | 
						
							| 43 | 21 38 42 | mpbir2an | ⊢ 𝑋  ∈  ( rRndVar ‘ 𝑃 ) |