Step |
Hyp |
Ref |
Expression |
1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
6 |
|
1ex |
⊢ 1 ∈ V |
7 |
|
c0ex |
⊢ 0 ∈ V |
8 |
1 2 6 7
|
fpr |
⊢ ( 𝐻 ≠ 𝑇 → { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } : { 𝐻 , 𝑇 } ⟶ { 1 , 0 } ) |
9 |
3 8
|
ax-mp |
⊢ { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } : { 𝐻 , 𝑇 } ⟶ { 1 , 0 } |
10 |
5
|
feq1i |
⊢ ( 𝑋 : { 𝐻 , 𝑇 } ⟶ { 1 , 0 } ↔ { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } : { 𝐻 , 𝑇 } ⟶ { 1 , 0 } ) |
11 |
9 10
|
mpbir |
⊢ 𝑋 : { 𝐻 , 𝑇 } ⟶ { 1 , 0 } |
12 |
1 2 3 4 5
|
coinflipuniv |
⊢ ∪ dom 𝑃 = { 𝐻 , 𝑇 } |
13 |
12
|
feq2i |
⊢ ( 𝑋 : ∪ dom 𝑃 ⟶ { 1 , 0 } ↔ 𝑋 : { 𝐻 , 𝑇 } ⟶ { 1 , 0 } ) |
14 |
11 13
|
mpbir |
⊢ 𝑋 : ∪ dom 𝑃 ⟶ { 1 , 0 } |
15 |
|
1re |
⊢ 1 ∈ ℝ |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
15 16
|
pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 0 ∈ ℝ ) |
18 |
6 7
|
prss |
⊢ ( ( 1 ∈ ℝ ∧ 0 ∈ ℝ ) ↔ { 1 , 0 } ⊆ ℝ ) |
19 |
17 18
|
mpbi |
⊢ { 1 , 0 } ⊆ ℝ |
20 |
|
fss |
⊢ ( ( 𝑋 : ∪ dom 𝑃 ⟶ { 1 , 0 } ∧ { 1 , 0 } ⊆ ℝ ) → 𝑋 : ∪ dom 𝑃 ⟶ ℝ ) |
21 |
14 19 20
|
mp2an |
⊢ 𝑋 : ∪ dom 𝑃 ⟶ ℝ |
22 |
|
imassrn |
⊢ ( ◡ 𝑋 “ 𝑦 ) ⊆ ran ◡ 𝑋 |
23 |
|
dfdm4 |
⊢ dom 𝑋 = ran ◡ 𝑋 |
24 |
11
|
fdmi |
⊢ dom 𝑋 = { 𝐻 , 𝑇 } |
25 |
23 24
|
eqtr3i |
⊢ ran ◡ 𝑋 = { 𝐻 , 𝑇 } |
26 |
22 25
|
sseqtri |
⊢ ( ◡ 𝑋 “ 𝑦 ) ⊆ { 𝐻 , 𝑇 } |
27 |
1 2 3 4 5
|
coinflipspace |
⊢ dom 𝑃 = 𝒫 { 𝐻 , 𝑇 } |
28 |
27
|
eleq2i |
⊢ ( ( ◡ 𝑋 “ 𝑦 ) ∈ dom 𝑃 ↔ ( ◡ 𝑋 “ 𝑦 ) ∈ 𝒫 { 𝐻 , 𝑇 } ) |
29 |
|
prex |
⊢ { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } ∈ V |
30 |
5 29
|
eqeltri |
⊢ 𝑋 ∈ V |
31 |
|
cnvexg |
⊢ ( 𝑋 ∈ V → ◡ 𝑋 ∈ V ) |
32 |
|
imaexg |
⊢ ( ◡ 𝑋 ∈ V → ( ◡ 𝑋 “ 𝑦 ) ∈ V ) |
33 |
30 31 32
|
mp2b |
⊢ ( ◡ 𝑋 “ 𝑦 ) ∈ V |
34 |
33
|
elpw |
⊢ ( ( ◡ 𝑋 “ 𝑦 ) ∈ 𝒫 { 𝐻 , 𝑇 } ↔ ( ◡ 𝑋 “ 𝑦 ) ⊆ { 𝐻 , 𝑇 } ) |
35 |
28 34
|
bitr2i |
⊢ ( ( ◡ 𝑋 “ 𝑦 ) ⊆ { 𝐻 , 𝑇 } ↔ ( ◡ 𝑋 “ 𝑦 ) ∈ dom 𝑃 ) |
36 |
35
|
biimpi |
⊢ ( ( ◡ 𝑋 “ 𝑦 ) ⊆ { 𝐻 , 𝑇 } → ( ◡ 𝑋 “ 𝑦 ) ∈ dom 𝑃 ) |
37 |
26 36
|
mp1i |
⊢ ( 𝑦 ∈ 𝔅ℝ → ( ◡ 𝑋 “ 𝑦 ) ∈ dom 𝑃 ) |
38 |
37
|
rgen |
⊢ ∀ 𝑦 ∈ 𝔅ℝ ( ◡ 𝑋 “ 𝑦 ) ∈ dom 𝑃 |
39 |
1 2 3 4 5
|
coinflipprob |
⊢ 𝑃 ∈ Prob |
40 |
39
|
a1i |
⊢ ( 𝐻 ∈ V → 𝑃 ∈ Prob ) |
41 |
40
|
isrrvv |
⊢ ( 𝐻 ∈ V → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ ( 𝑋 : ∪ dom 𝑃 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝔅ℝ ( ◡ 𝑋 “ 𝑦 ) ∈ dom 𝑃 ) ) ) |
42 |
1 41
|
ax-mp |
⊢ ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ ( 𝑋 : ∪ dom 𝑃 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝔅ℝ ( ◡ 𝑋 “ 𝑦 ) ∈ dom 𝑃 ) ) |
43 |
21 38 42
|
mpbir2an |
⊢ 𝑋 ∈ ( rRndVar ‘ 𝑃 ) |