| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curry2.1 |
|- G = ( F o. `' ( 1st |` ( _V X. { C } ) ) ) |
| 2 |
|
fnfun |
|- ( F Fn ( A X. B ) -> Fun F ) |
| 3 |
|
1stconst |
|- ( C e. B -> ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V ) |
| 4 |
|
dff1o3 |
|- ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V <-> ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -onto-> _V /\ Fun `' ( 1st |` ( _V X. { C } ) ) ) ) |
| 5 |
4
|
simprbi |
|- ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V -> Fun `' ( 1st |` ( _V X. { C } ) ) ) |
| 6 |
3 5
|
syl |
|- ( C e. B -> Fun `' ( 1st |` ( _V X. { C } ) ) ) |
| 7 |
|
funco |
|- ( ( Fun F /\ Fun `' ( 1st |` ( _V X. { C } ) ) ) -> Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ) |
| 8 |
2 6 7
|
syl2an |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ) |
| 9 |
|
dmco |
|- dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) |
| 10 |
|
fndm |
|- ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) |
| 11 |
10
|
adantr |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> dom F = ( A X. B ) ) |
| 12 |
11
|
imaeq2d |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) = ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) ) |
| 13 |
|
imacnvcnv |
|- ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ( ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) |
| 14 |
|
df-ima |
|- ( ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ran ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) |
| 15 |
|
resres |
|- ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) = ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) |
| 16 |
15
|
rneqi |
|- ran ( ( 1st |` ( _V X. { C } ) ) |` ( A X. B ) ) = ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) |
| 17 |
13 14 16
|
3eqtri |
|- ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) |
| 18 |
|
inxp |
|- ( ( _V X. { C } ) i^i ( A X. B ) ) = ( ( _V i^i A ) X. ( { C } i^i B ) ) |
| 19 |
|
incom |
|- ( _V i^i A ) = ( A i^i _V ) |
| 20 |
|
inv1 |
|- ( A i^i _V ) = A |
| 21 |
19 20
|
eqtri |
|- ( _V i^i A ) = A |
| 22 |
21
|
xpeq1i |
|- ( ( _V i^i A ) X. ( { C } i^i B ) ) = ( A X. ( { C } i^i B ) ) |
| 23 |
18 22
|
eqtri |
|- ( ( _V X. { C } ) i^i ( A X. B ) ) = ( A X. ( { C } i^i B ) ) |
| 24 |
|
snssi |
|- ( C e. B -> { C } C_ B ) |
| 25 |
|
dfss2 |
|- ( { C } C_ B <-> ( { C } i^i B ) = { C } ) |
| 26 |
24 25
|
sylib |
|- ( C e. B -> ( { C } i^i B ) = { C } ) |
| 27 |
26
|
xpeq2d |
|- ( C e. B -> ( A X. ( { C } i^i B ) ) = ( A X. { C } ) ) |
| 28 |
23 27
|
eqtrid |
|- ( C e. B -> ( ( _V X. { C } ) i^i ( A X. B ) ) = ( A X. { C } ) ) |
| 29 |
28
|
reseq2d |
|- ( C e. B -> ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = ( 1st |` ( A X. { C } ) ) ) |
| 30 |
29
|
rneqd |
|- ( C e. B -> ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = ran ( 1st |` ( A X. { C } ) ) ) |
| 31 |
|
1stconst |
|- ( C e. B -> ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -1-1-onto-> A ) |
| 32 |
|
f1ofo |
|- ( ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -1-1-onto-> A -> ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -onto-> A ) |
| 33 |
|
forn |
|- ( ( 1st |` ( A X. { C } ) ) : ( A X. { C } ) -onto-> A -> ran ( 1st |` ( A X. { C } ) ) = A ) |
| 34 |
31 32 33
|
3syl |
|- ( C e. B -> ran ( 1st |` ( A X. { C } ) ) = A ) |
| 35 |
30 34
|
eqtrd |
|- ( C e. B -> ran ( 1st |` ( ( _V X. { C } ) i^i ( A X. B ) ) ) = A ) |
| 36 |
17 35
|
eqtrid |
|- ( C e. B -> ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = A ) |
| 37 |
36
|
adantl |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " ( A X. B ) ) = A ) |
| 38 |
12 37
|
eqtrd |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( `' `' ( 1st |` ( _V X. { C } ) ) " dom F ) = A ) |
| 39 |
9 38
|
eqtrid |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) |
| 40 |
1
|
fneq1i |
|- ( G Fn A <-> ( F o. `' ( 1st |` ( _V X. { C } ) ) ) Fn A ) |
| 41 |
|
df-fn |
|- ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) Fn A <-> ( Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) /\ dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) ) |
| 42 |
40 41
|
bitri |
|- ( G Fn A <-> ( Fun ( F o. `' ( 1st |` ( _V X. { C } ) ) ) /\ dom ( F o. `' ( 1st |` ( _V X. { C } ) ) ) = A ) ) |
| 43 |
8 39 42
|
sylanbrc |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> G Fn A ) |
| 44 |
|
dffn5 |
|- ( G Fn A <-> G = ( x e. A |-> ( G ` x ) ) ) |
| 45 |
43 44
|
sylib |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( G ` x ) ) ) |
| 46 |
1
|
fveq1i |
|- ( G ` x ) = ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) |
| 47 |
|
dff1o4 |
|- ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V <-> ( ( 1st |` ( _V X. { C } ) ) Fn ( _V X. { C } ) /\ `' ( 1st |` ( _V X. { C } ) ) Fn _V ) ) |
| 48 |
3 47
|
sylib |
|- ( C e. B -> ( ( 1st |` ( _V X. { C } ) ) Fn ( _V X. { C } ) /\ `' ( 1st |` ( _V X. { C } ) ) Fn _V ) ) |
| 49 |
48
|
simprd |
|- ( C e. B -> `' ( 1st |` ( _V X. { C } ) ) Fn _V ) |
| 50 |
|
vex |
|- x e. _V |
| 51 |
|
fvco2 |
|- ( ( `' ( 1st |` ( _V X. { C } ) ) Fn _V /\ x e. _V ) -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
| 52 |
49 50 51
|
sylancl |
|- ( C e. B -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
| 53 |
52
|
ad2antlr |
|- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( ( F o. `' ( 1st |` ( _V X. { C } ) ) ) ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
| 54 |
46 53
|
eqtrid |
|- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( G ` x ) = ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) ) |
| 55 |
3
|
adantr |
|- ( ( C e. B /\ x e. A ) -> ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V ) |
| 56 |
50
|
a1i |
|- ( ( C e. B /\ x e. A ) -> x e. _V ) |
| 57 |
|
snidg |
|- ( C e. B -> C e. { C } ) |
| 58 |
57
|
adantr |
|- ( ( C e. B /\ x e. A ) -> C e. { C } ) |
| 59 |
56 58
|
opelxpd |
|- ( ( C e. B /\ x e. A ) -> <. x , C >. e. ( _V X. { C } ) ) |
| 60 |
55 59
|
jca |
|- ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V /\ <. x , C >. e. ( _V X. { C } ) ) ) |
| 61 |
50
|
a1i |
|- ( C e. B -> x e. _V ) |
| 62 |
61 57
|
opelxpd |
|- ( C e. B -> <. x , C >. e. ( _V X. { C } ) ) |
| 63 |
62
|
fvresd |
|- ( C e. B -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = ( 1st ` <. x , C >. ) ) |
| 64 |
63
|
adantr |
|- ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = ( 1st ` <. x , C >. ) ) |
| 65 |
|
op1stg |
|- ( ( x e. A /\ C e. B ) -> ( 1st ` <. x , C >. ) = x ) |
| 66 |
65
|
ancoms |
|- ( ( C e. B /\ x e. A ) -> ( 1st ` <. x , C >. ) = x ) |
| 67 |
64 66
|
eqtrd |
|- ( ( C e. B /\ x e. A ) -> ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = x ) |
| 68 |
|
f1ocnvfv |
|- ( ( ( 1st |` ( _V X. { C } ) ) : ( _V X. { C } ) -1-1-onto-> _V /\ <. x , C >. e. ( _V X. { C } ) ) -> ( ( ( 1st |` ( _V X. { C } ) ) ` <. x , C >. ) = x -> ( `' ( 1st |` ( _V X. { C } ) ) ` x ) = <. x , C >. ) ) |
| 69 |
60 67 68
|
sylc |
|- ( ( C e. B /\ x e. A ) -> ( `' ( 1st |` ( _V X. { C } ) ) ` x ) = <. x , C >. ) |
| 70 |
69
|
fveq2d |
|- ( ( C e. B /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( F ` <. x , C >. ) ) |
| 71 |
70
|
adantll |
|- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( F ` <. x , C >. ) ) |
| 72 |
|
df-ov |
|- ( x F C ) = ( F ` <. x , C >. ) |
| 73 |
71 72
|
eqtr4di |
|- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( F ` ( `' ( 1st |` ( _V X. { C } ) ) ` x ) ) = ( x F C ) ) |
| 74 |
54 73
|
eqtrd |
|- ( ( ( F Fn ( A X. B ) /\ C e. B ) /\ x e. A ) -> ( G ` x ) = ( x F C ) ) |
| 75 |
74
|
mpteq2dva |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> ( x e. A |-> ( G ` x ) ) = ( x e. A |-> ( x F C ) ) ) |
| 76 |
45 75
|
eqtrd |
|- ( ( F Fn ( A X. B ) /\ C e. B ) -> G = ( x e. A |-> ( x F C ) ) ) |