| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirkertrigeqlem2.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dirkertrigeqlem2.sinne0 |
|- ( ph -> ( sin ` A ) =/= 0 ) |
| 3 |
|
dirkertrigeqlem2.n |
|- ( ph -> N e. NN ) |
| 4 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 5 |
4
|
halfcld |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 6 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 7 |
|
elfzelz |
|- ( n e. ( 1 ... N ) -> n e. ZZ ) |
| 8 |
7
|
zcnd |
|- ( n e. ( 1 ... N ) -> n e. CC ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> n e. CC ) |
| 10 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> A e. CC ) |
| 12 |
9 11
|
mulcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( n x. A ) e. CC ) |
| 13 |
12
|
coscld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( cos ` ( n x. A ) ) e. CC ) |
| 14 |
6 13
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) e. CC ) |
| 15 |
5 14
|
addcld |
|- ( ph -> ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) e. CC ) |
| 16 |
10
|
sincld |
|- ( ph -> ( sin ` A ) e. CC ) |
| 17 |
15 16 2
|
divcan4d |
|- ( ph -> ( ( ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) x. ( sin ` A ) ) / ( sin ` A ) ) = ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) ) |
| 18 |
17
|
eqcomd |
|- ( ph -> ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) = ( ( ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) x. ( sin ` A ) ) / ( sin ` A ) ) ) |
| 19 |
6 16 13
|
fsummulc1 |
|- ( ph -> ( sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) x. ( sin ` A ) ) = sum_ n e. ( 1 ... N ) ( ( cos ` ( n x. A ) ) x. ( sin ` A ) ) ) |
| 20 |
16
|
adantr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` A ) e. CC ) |
| 21 |
13 20
|
mulcomd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( cos ` ( n x. A ) ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( cos ` ( n x. A ) ) ) ) |
| 22 |
|
sinmulcos |
|- ( ( A e. CC /\ ( n x. A ) e. CC ) -> ( ( sin ` A ) x. ( cos ` ( n x. A ) ) ) = ( ( ( sin ` ( A + ( n x. A ) ) ) + ( sin ` ( A - ( n x. A ) ) ) ) / 2 ) ) |
| 23 |
11 12 22
|
syl2anc |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` A ) x. ( cos ` ( n x. A ) ) ) = ( ( ( sin ` ( A + ( n x. A ) ) ) + ( sin ` ( A - ( n x. A ) ) ) ) / 2 ) ) |
| 24 |
|
1cnd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> 1 e. CC ) |
| 25 |
9 24 11
|
adddird |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( n + 1 ) x. A ) = ( ( n x. A ) + ( 1 x. A ) ) ) |
| 26 |
24 11
|
mulcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( 1 x. A ) e. CC ) |
| 27 |
12 26
|
addcomd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( n x. A ) + ( 1 x. A ) ) = ( ( 1 x. A ) + ( n x. A ) ) ) |
| 28 |
10
|
mullidd |
|- ( ph -> ( 1 x. A ) = A ) |
| 29 |
28
|
oveq1d |
|- ( ph -> ( ( 1 x. A ) + ( n x. A ) ) = ( A + ( n x. A ) ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1 x. A ) + ( n x. A ) ) = ( A + ( n x. A ) ) ) |
| 31 |
25 27 30
|
3eqtrrd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( A + ( n x. A ) ) = ( ( n + 1 ) x. A ) ) |
| 32 |
31
|
fveq2d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( A + ( n x. A ) ) ) = ( sin ` ( ( n + 1 ) x. A ) ) ) |
| 33 |
12 11
|
negsubdi2d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> -u ( ( n x. A ) - A ) = ( A - ( n x. A ) ) ) |
| 34 |
33
|
eqcomd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( A - ( n x. A ) ) = -u ( ( n x. A ) - A ) ) |
| 35 |
34
|
fveq2d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( A - ( n x. A ) ) ) = ( sin ` -u ( ( n x. A ) - A ) ) ) |
| 36 |
12 11
|
subcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( n x. A ) - A ) e. CC ) |
| 37 |
|
sinneg |
|- ( ( ( n x. A ) - A ) e. CC -> ( sin ` -u ( ( n x. A ) - A ) ) = -u ( sin ` ( ( n x. A ) - A ) ) ) |
| 38 |
36 37
|
syl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` -u ( ( n x. A ) - A ) ) = -u ( sin ` ( ( n x. A ) - A ) ) ) |
| 39 |
35 38
|
eqtrd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( A - ( n x. A ) ) ) = -u ( sin ` ( ( n x. A ) - A ) ) ) |
| 40 |
32 39
|
oveq12d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( A + ( n x. A ) ) ) + ( sin ` ( A - ( n x. A ) ) ) ) = ( ( sin ` ( ( n + 1 ) x. A ) ) + -u ( sin ` ( ( n x. A ) - A ) ) ) ) |
| 41 |
11 12
|
addcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( A + ( n x. A ) ) e. CC ) |
| 42 |
41
|
sincld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( A + ( n x. A ) ) ) e. CC ) |
| 43 |
32 42
|
eqeltrrd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( ( n + 1 ) x. A ) ) e. CC ) |
| 44 |
36
|
sincld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( ( n x. A ) - A ) ) e. CC ) |
| 45 |
43 44
|
negsubd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( ( n + 1 ) x. A ) ) + -u ( sin ` ( ( n x. A ) - A ) ) ) = ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n x. A ) - A ) ) ) ) |
| 46 |
9 11
|
mulsubfacd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( n x. A ) - A ) = ( ( n - 1 ) x. A ) ) |
| 47 |
46
|
fveq2d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( ( n x. A ) - A ) ) = ( sin ` ( ( n - 1 ) x. A ) ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n x. A ) - A ) ) ) = ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) |
| 49 |
40 45 48
|
3eqtrd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( A + ( n x. A ) ) ) + ( sin ` ( A - ( n x. A ) ) ) ) = ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) |
| 50 |
49
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( sin ` ( A + ( n x. A ) ) ) + ( sin ` ( A - ( n x. A ) ) ) ) / 2 ) = ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) / 2 ) ) |
| 51 |
21 23 50
|
3eqtrd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( cos ` ( n x. A ) ) x. ( sin ` A ) ) = ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) / 2 ) ) |
| 52 |
51
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( cos ` ( n x. A ) ) x. ( sin ` A ) ) = sum_ n e. ( 1 ... N ) ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) / 2 ) ) |
| 53 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 54 |
|
peano2cnm |
|- ( n e. CC -> ( n - 1 ) e. CC ) |
| 55 |
9 54
|
syl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( n - 1 ) e. CC ) |
| 56 |
55 11
|
mulcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( n - 1 ) x. A ) e. CC ) |
| 57 |
56
|
sincld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( ( n - 1 ) x. A ) ) e. CC ) |
| 58 |
43 57
|
subcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) e. CC ) |
| 59 |
|
2ne0 |
|- 2 =/= 0 |
| 60 |
59
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 61 |
6 53 58 60
|
fsumdivc |
|- ( ph -> ( sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) / 2 ) = sum_ n e. ( 1 ... N ) ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) / 2 ) ) |
| 62 |
6 58
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) e. CC ) |
| 63 |
62 53 60
|
divrec2d |
|- ( ph -> ( sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) / 2 ) = ( ( 1 / 2 ) x. sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) |
| 64 |
61 63
|
eqtr3d |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) / 2 ) = ( ( 1 / 2 ) x. sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) |
| 65 |
19 52 64
|
3eqtrd |
|- ( ph -> ( sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) x. ( sin ` A ) ) = ( ( 1 / 2 ) x. sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) |
| 66 |
65
|
oveq2d |
|- ( ph -> ( ( ( 1 / 2 ) x. ( sin ` A ) ) + ( sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) x. ( sin ` A ) ) ) = ( ( ( 1 / 2 ) x. ( sin ` A ) ) + ( ( 1 / 2 ) x. sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) ) |
| 67 |
5 14 16
|
adddird |
|- ( ph -> ( ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) x. ( sin ` A ) ) = ( ( ( 1 / 2 ) x. ( sin ` A ) ) + ( sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) x. ( sin ` A ) ) ) ) |
| 68 |
5 16 62
|
adddid |
|- ( ph -> ( ( 1 / 2 ) x. ( ( sin ` A ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) = ( ( ( 1 / 2 ) x. ( sin ` A ) ) + ( ( 1 / 2 ) x. sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) ) |
| 69 |
66 67 68
|
3eqtr4d |
|- ( ph -> ( ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) x. ( sin ` A ) ) = ( ( 1 / 2 ) x. ( ( sin ` A ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) ) |
| 70 |
69
|
oveq1d |
|- ( ph -> ( ( ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) x. ( sin ` A ) ) / ( sin ` A ) ) = ( ( ( 1 / 2 ) x. ( ( sin ` A ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) / ( sin ` A ) ) ) |
| 71 |
12
|
sincld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( n x. A ) ) e. CC ) |
| 72 |
43 71 57
|
npncand |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) + ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) = ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) |
| 73 |
72
|
eqcomd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) = ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) + ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) |
| 74 |
73
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) = sum_ n e. ( 1 ... N ) ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) + ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) |
| 75 |
43 71
|
subcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) e. CC ) |
| 76 |
71 57
|
subcld |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) e. CC ) |
| 77 |
6 75 76
|
fsumadd |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) + ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) = ( sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) |
| 78 |
|
fvoveq1 |
|- ( j = n -> ( sin ` ( j x. A ) ) = ( sin ` ( n x. A ) ) ) |
| 79 |
|
fvoveq1 |
|- ( j = ( n + 1 ) -> ( sin ` ( j x. A ) ) = ( sin ` ( ( n + 1 ) x. A ) ) ) |
| 80 |
|
fvoveq1 |
|- ( j = 1 -> ( sin ` ( j x. A ) ) = ( sin ` ( 1 x. A ) ) ) |
| 81 |
|
fvoveq1 |
|- ( j = ( N + 1 ) -> ( sin ` ( j x. A ) ) = ( sin ` ( ( N + 1 ) x. A ) ) ) |
| 82 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 83 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 84 |
3 83
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 85 |
|
peano2uz |
|- ( N e. ( ZZ>= ` 1 ) -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 86 |
84 85
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 87 |
|
elfzelz |
|- ( j e. ( 1 ... ( N + 1 ) ) -> j e. ZZ ) |
| 88 |
87
|
zcnd |
|- ( j e. ( 1 ... ( N + 1 ) ) -> j e. CC ) |
| 89 |
88
|
adantl |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> j e. CC ) |
| 90 |
10
|
adantr |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> A e. CC ) |
| 91 |
89 90
|
mulcld |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> ( j x. A ) e. CC ) |
| 92 |
91
|
sincld |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> ( sin ` ( j x. A ) ) e. CC ) |
| 93 |
78 79 80 81 82 86 92
|
telfsum2 |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) = ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) ) |
| 94 |
|
1cnd |
|- ( n e. ( 1 ... N ) -> 1 e. CC ) |
| 95 |
8 94
|
pncand |
|- ( n e. ( 1 ... N ) -> ( ( n + 1 ) - 1 ) = n ) |
| 96 |
95
|
eqcomd |
|- ( n e. ( 1 ... N ) -> n = ( ( n + 1 ) - 1 ) ) |
| 97 |
96
|
adantl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> n = ( ( n + 1 ) - 1 ) ) |
| 98 |
97
|
fvoveq1d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( sin ` ( n x. A ) ) = ( sin ` ( ( ( n + 1 ) - 1 ) x. A ) ) ) |
| 99 |
98
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) = ( ( sin ` ( ( ( n + 1 ) - 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) |
| 100 |
99
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) = sum_ n e. ( 1 ... N ) ( ( sin ` ( ( ( n + 1 ) - 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) |
| 101 |
|
oveq1 |
|- ( j = n -> ( j - 1 ) = ( n - 1 ) ) |
| 102 |
101
|
fvoveq1d |
|- ( j = n -> ( sin ` ( ( j - 1 ) x. A ) ) = ( sin ` ( ( n - 1 ) x. A ) ) ) |
| 103 |
|
oveq1 |
|- ( j = ( n + 1 ) -> ( j - 1 ) = ( ( n + 1 ) - 1 ) ) |
| 104 |
103
|
fvoveq1d |
|- ( j = ( n + 1 ) -> ( sin ` ( ( j - 1 ) x. A ) ) = ( sin ` ( ( ( n + 1 ) - 1 ) x. A ) ) ) |
| 105 |
|
oveq1 |
|- ( j = 1 -> ( j - 1 ) = ( 1 - 1 ) ) |
| 106 |
105
|
fvoveq1d |
|- ( j = 1 -> ( sin ` ( ( j - 1 ) x. A ) ) = ( sin ` ( ( 1 - 1 ) x. A ) ) ) |
| 107 |
|
oveq1 |
|- ( j = ( N + 1 ) -> ( j - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 108 |
107
|
fvoveq1d |
|- ( j = ( N + 1 ) -> ( sin ` ( ( j - 1 ) x. A ) ) = ( sin ` ( ( ( N + 1 ) - 1 ) x. A ) ) ) |
| 109 |
|
1cnd |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> 1 e. CC ) |
| 110 |
89 109
|
subcld |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> ( j - 1 ) e. CC ) |
| 111 |
110 90
|
mulcld |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> ( ( j - 1 ) x. A ) e. CC ) |
| 112 |
111
|
sincld |
|- ( ( ph /\ j e. ( 1 ... ( N + 1 ) ) ) -> ( sin ` ( ( j - 1 ) x. A ) ) e. CC ) |
| 113 |
102 104 106 108 82 86 112
|
telfsum2 |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( sin ` ( ( ( n + 1 ) - 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) = ( ( sin ` ( ( ( N + 1 ) - 1 ) x. A ) ) - ( sin ` ( ( 1 - 1 ) x. A ) ) ) ) |
| 114 |
3
|
nnred |
|- ( ph -> N e. RR ) |
| 115 |
114
|
recnd |
|- ( ph -> N e. CC ) |
| 116 |
115 4
|
pncand |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 117 |
116
|
fvoveq1d |
|- ( ph -> ( sin ` ( ( ( N + 1 ) - 1 ) x. A ) ) = ( sin ` ( N x. A ) ) ) |
| 118 |
4
|
subidd |
|- ( ph -> ( 1 - 1 ) = 0 ) |
| 119 |
118
|
oveq1d |
|- ( ph -> ( ( 1 - 1 ) x. A ) = ( 0 x. A ) ) |
| 120 |
10
|
mul02d |
|- ( ph -> ( 0 x. A ) = 0 ) |
| 121 |
119 120
|
eqtrd |
|- ( ph -> ( ( 1 - 1 ) x. A ) = 0 ) |
| 122 |
121
|
fveq2d |
|- ( ph -> ( sin ` ( ( 1 - 1 ) x. A ) ) = ( sin ` 0 ) ) |
| 123 |
|
sin0 |
|- ( sin ` 0 ) = 0 |
| 124 |
123
|
a1i |
|- ( ph -> ( sin ` 0 ) = 0 ) |
| 125 |
122 124
|
eqtrd |
|- ( ph -> ( sin ` ( ( 1 - 1 ) x. A ) ) = 0 ) |
| 126 |
117 125
|
oveq12d |
|- ( ph -> ( ( sin ` ( ( ( N + 1 ) - 1 ) x. A ) ) - ( sin ` ( ( 1 - 1 ) x. A ) ) ) = ( ( sin ` ( N x. A ) ) - 0 ) ) |
| 127 |
100 113 126
|
3eqtrd |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) = ( ( sin ` ( N x. A ) ) - 0 ) ) |
| 128 |
93 127
|
oveq12d |
|- ( ph -> ( sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( n x. A ) ) ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( n x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) = ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) |
| 129 |
74 77 128
|
3eqtrd |
|- ( ph -> sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) = ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) |
| 130 |
129
|
oveq2d |
|- ( ph -> ( ( sin ` A ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) = ( ( sin ` A ) + ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) ) |
| 131 |
28
|
fveq2d |
|- ( ph -> ( sin ` ( 1 x. A ) ) = ( sin ` A ) ) |
| 132 |
131
|
oveq2d |
|- ( ph -> ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) = ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) ) |
| 133 |
132
|
oveq1d |
|- ( ph -> ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) = ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) |
| 134 |
133
|
oveq2d |
|- ( ph -> ( ( sin ` A ) + ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) = ( ( sin ` A ) + ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) ) |
| 135 |
115 4
|
addcld |
|- ( ph -> ( N + 1 ) e. CC ) |
| 136 |
135 10
|
mulcld |
|- ( ph -> ( ( N + 1 ) x. A ) e. CC ) |
| 137 |
136
|
sincld |
|- ( ph -> ( sin ` ( ( N + 1 ) x. A ) ) e. CC ) |
| 138 |
137 16
|
subcld |
|- ( ph -> ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) e. CC ) |
| 139 |
115 10
|
mulcld |
|- ( ph -> ( N x. A ) e. CC ) |
| 140 |
139
|
sincld |
|- ( ph -> ( sin ` ( N x. A ) ) e. CC ) |
| 141 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 142 |
140 141
|
subcld |
|- ( ph -> ( ( sin ` ( N x. A ) ) - 0 ) e. CC ) |
| 143 |
16 138 142
|
addassd |
|- ( ph -> ( ( ( sin ` A ) + ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) = ( ( sin ` A ) + ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) ) |
| 144 |
143
|
eqcomd |
|- ( ph -> ( ( sin ` A ) + ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) = ( ( ( sin ` A ) + ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) |
| 145 |
16 137
|
pncan3d |
|- ( ph -> ( ( sin ` A ) + ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) ) = ( sin ` ( ( N + 1 ) x. A ) ) ) |
| 146 |
140
|
subid1d |
|- ( ph -> ( ( sin ` ( N x. A ) ) - 0 ) = ( sin ` ( N x. A ) ) ) |
| 147 |
145 146
|
oveq12d |
|- ( ph -> ( ( ( sin ` A ) + ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) = ( ( sin ` ( ( N + 1 ) x. A ) ) + ( sin ` ( N x. A ) ) ) ) |
| 148 |
137 140
|
addcomd |
|- ( ph -> ( ( sin ` ( ( N + 1 ) x. A ) ) + ( sin ` ( N x. A ) ) ) = ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) |
| 149 |
147 148
|
eqtrd |
|- ( ph -> ( ( ( sin ` A ) + ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) = ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) |
| 150 |
134 144 149
|
3eqtrd |
|- ( ph -> ( ( sin ` A ) + ( ( ( sin ` ( ( N + 1 ) x. A ) ) - ( sin ` ( 1 x. A ) ) ) + ( ( sin ` ( N x. A ) ) - 0 ) ) ) = ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) |
| 151 |
130 150
|
eqtrd |
|- ( ph -> ( ( sin ` A ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) = ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) |
| 152 |
151
|
oveq2d |
|- ( ph -> ( ( 1 / 2 ) x. ( ( sin ` A ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) ) |
| 153 |
152
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) x. ( ( sin ` A ) + sum_ n e. ( 1 ... N ) ( ( sin ` ( ( n + 1 ) x. A ) ) - ( sin ` ( ( n - 1 ) x. A ) ) ) ) ) / ( sin ` A ) ) = ( ( ( 1 / 2 ) x. ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) / ( sin ` A ) ) ) |
| 154 |
18 70 153
|
3eqtrd |
|- ( ph -> ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) = ( ( ( 1 / 2 ) x. ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) / ( sin ` A ) ) ) |
| 155 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 156 |
155
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 157 |
114 156
|
readdcld |
|- ( ph -> ( N + ( 1 / 2 ) ) e. RR ) |
| 158 |
157 1
|
remulcld |
|- ( ph -> ( ( N + ( 1 / 2 ) ) x. A ) e. RR ) |
| 159 |
158
|
recnd |
|- ( ph -> ( ( N + ( 1 / 2 ) ) x. A ) e. CC ) |
| 160 |
5 10
|
mulcld |
|- ( ph -> ( ( 1 / 2 ) x. A ) e. CC ) |
| 161 |
|
sinmulcos |
|- ( ( ( ( N + ( 1 / 2 ) ) x. A ) e. CC /\ ( ( 1 / 2 ) x. A ) e. CC ) -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) = ( ( ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) + ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) - ( ( 1 / 2 ) x. A ) ) ) ) / 2 ) ) |
| 162 |
159 160 161
|
syl2anc |
|- ( ph -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) = ( ( ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) + ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) - ( ( 1 / 2 ) x. A ) ) ) ) / 2 ) ) |
| 163 |
115 5 10
|
adddird |
|- ( ph -> ( ( N + ( 1 / 2 ) ) x. A ) = ( ( N x. A ) + ( ( 1 / 2 ) x. A ) ) ) |
| 164 |
163
|
oveq1d |
|- ( ph -> ( ( ( N + ( 1 / 2 ) ) x. A ) + ( ( 1 / 2 ) x. A ) ) = ( ( ( N x. A ) + ( ( 1 / 2 ) x. A ) ) + ( ( 1 / 2 ) x. A ) ) ) |
| 165 |
139 160 160
|
addassd |
|- ( ph -> ( ( ( N x. A ) + ( ( 1 / 2 ) x. A ) ) + ( ( 1 / 2 ) x. A ) ) = ( ( N x. A ) + ( ( ( 1 / 2 ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) ) |
| 166 |
5 5 10
|
adddird |
|- ( ph -> ( ( ( 1 / 2 ) + ( 1 / 2 ) ) x. A ) = ( ( ( 1 / 2 ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) |
| 167 |
4
|
2halvesd |
|- ( ph -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 168 |
167
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) + ( 1 / 2 ) ) x. A ) = ( 1 x. A ) ) |
| 169 |
166 168
|
eqtr3d |
|- ( ph -> ( ( ( 1 / 2 ) x. A ) + ( ( 1 / 2 ) x. A ) ) = ( 1 x. A ) ) |
| 170 |
169
|
oveq2d |
|- ( ph -> ( ( N x. A ) + ( ( ( 1 / 2 ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) = ( ( N x. A ) + ( 1 x. A ) ) ) |
| 171 |
115 4 10
|
adddird |
|- ( ph -> ( ( N + 1 ) x. A ) = ( ( N x. A ) + ( 1 x. A ) ) ) |
| 172 |
170 171
|
eqtr4d |
|- ( ph -> ( ( N x. A ) + ( ( ( 1 / 2 ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) = ( ( N + 1 ) x. A ) ) |
| 173 |
164 165 172
|
3eqtrrd |
|- ( ph -> ( ( N + 1 ) x. A ) = ( ( ( N + ( 1 / 2 ) ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) |
| 174 |
173
|
fveq2d |
|- ( ph -> ( sin ` ( ( N + 1 ) x. A ) ) = ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) ) |
| 175 |
163
|
oveq1d |
|- ( ph -> ( ( ( N + ( 1 / 2 ) ) x. A ) - ( ( 1 / 2 ) x. A ) ) = ( ( ( N x. A ) + ( ( 1 / 2 ) x. A ) ) - ( ( 1 / 2 ) x. A ) ) ) |
| 176 |
139 160
|
pncand |
|- ( ph -> ( ( ( N x. A ) + ( ( 1 / 2 ) x. A ) ) - ( ( 1 / 2 ) x. A ) ) = ( N x. A ) ) |
| 177 |
175 176
|
eqtr2d |
|- ( ph -> ( N x. A ) = ( ( ( N + ( 1 / 2 ) ) x. A ) - ( ( 1 / 2 ) x. A ) ) ) |
| 178 |
177
|
fveq2d |
|- ( ph -> ( sin ` ( N x. A ) ) = ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) - ( ( 1 / 2 ) x. A ) ) ) ) |
| 179 |
174 178
|
oveq12d |
|- ( ph -> ( ( sin ` ( ( N + 1 ) x. A ) ) + ( sin ` ( N x. A ) ) ) = ( ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) + ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) - ( ( 1 / 2 ) x. A ) ) ) ) ) |
| 180 |
179
|
oveq1d |
|- ( ph -> ( ( ( sin ` ( ( N + 1 ) x. A ) ) + ( sin ` ( N x. A ) ) ) / 2 ) = ( ( ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) + ( ( 1 / 2 ) x. A ) ) ) + ( sin ` ( ( ( N + ( 1 / 2 ) ) x. A ) - ( ( 1 / 2 ) x. A ) ) ) ) / 2 ) ) |
| 181 |
162 180
|
eqtr4d |
|- ( ph -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) = ( ( ( sin ` ( ( N + 1 ) x. A ) ) + ( sin ` ( N x. A ) ) ) / 2 ) ) |
| 182 |
148
|
oveq1d |
|- ( ph -> ( ( ( sin ` ( ( N + 1 ) x. A ) ) + ( sin ` ( N x. A ) ) ) / 2 ) = ( ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) / 2 ) ) |
| 183 |
140 137
|
addcld |
|- ( ph -> ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) e. CC ) |
| 184 |
183 53 60
|
divrec2d |
|- ( ph -> ( ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) / 2 ) = ( ( 1 / 2 ) x. ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) ) |
| 185 |
181 182 184
|
3eqtrrd |
|- ( ph -> ( ( 1 / 2 ) x. ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) ) |
| 186 |
185
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) x. ( ( sin ` ( N x. A ) ) + ( sin ` ( ( N + 1 ) x. A ) ) ) ) / ( sin ` A ) ) = ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) / ( sin ` A ) ) ) |
| 187 |
10 53 60
|
divcan2d |
|- ( ph -> ( 2 x. ( A / 2 ) ) = A ) |
| 188 |
187
|
eqcomd |
|- ( ph -> A = ( 2 x. ( A / 2 ) ) ) |
| 189 |
188
|
fveq2d |
|- ( ph -> ( sin ` A ) = ( sin ` ( 2 x. ( A / 2 ) ) ) ) |
| 190 |
10
|
halfcld |
|- ( ph -> ( A / 2 ) e. CC ) |
| 191 |
|
sin2t |
|- ( ( A / 2 ) e. CC -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 192 |
190 191
|
syl |
|- ( ph -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 193 |
189 192
|
eqtrd |
|- ( ph -> ( sin ` A ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 194 |
193
|
oveq2d |
|- ( ph -> ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) / ( sin ` A ) ) = ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) / ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 195 |
190
|
sincld |
|- ( ph -> ( sin ` ( A / 2 ) ) e. CC ) |
| 196 |
190
|
coscld |
|- ( ph -> ( cos ` ( A / 2 ) ) e. CC ) |
| 197 |
53 195 196
|
mulassd |
|- ( ph -> ( ( 2 x. ( sin ` ( A / 2 ) ) ) x. ( cos ` ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 198 |
10 53 60
|
divrec2d |
|- ( ph -> ( A / 2 ) = ( ( 1 / 2 ) x. A ) ) |
| 199 |
198
|
fveq2d |
|- ( ph -> ( cos ` ( A / 2 ) ) = ( cos ` ( ( 1 / 2 ) x. A ) ) ) |
| 200 |
199
|
oveq2d |
|- ( ph -> ( ( 2 x. ( sin ` ( A / 2 ) ) ) x. ( cos ` ( A / 2 ) ) ) = ( ( 2 x. ( sin ` ( A / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) ) |
| 201 |
197 200
|
eqtr3d |
|- ( ph -> ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) = ( ( 2 x. ( sin ` ( A / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) ) |
| 202 |
201
|
oveq2d |
|- ( ph -> ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) / ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) = ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) / ( ( 2 x. ( sin ` ( A / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) ) ) |
| 203 |
159
|
sincld |
|- ( ph -> ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) e. CC ) |
| 204 |
53 195
|
mulcld |
|- ( ph -> ( 2 x. ( sin ` ( A / 2 ) ) ) e. CC ) |
| 205 |
160
|
coscld |
|- ( ph -> ( cos ` ( ( 1 / 2 ) x. A ) ) e. CC ) |
| 206 |
195 196
|
mulcld |
|- ( ph -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. CC ) |
| 207 |
193 2
|
eqnetrrd |
|- ( ph -> ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) =/= 0 ) |
| 208 |
53 206 207
|
mulne0bbd |
|- ( ph -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) =/= 0 ) |
| 209 |
195 196 208
|
mulne0bad |
|- ( ph -> ( sin ` ( A / 2 ) ) =/= 0 ) |
| 210 |
53 195 60 209
|
mulne0d |
|- ( ph -> ( 2 x. ( sin ` ( A / 2 ) ) ) =/= 0 ) |
| 211 |
195 196 208
|
mulne0bbd |
|- ( ph -> ( cos ` ( A / 2 ) ) =/= 0 ) |
| 212 |
199 211
|
eqnetrrd |
|- ( ph -> ( cos ` ( ( 1 / 2 ) x. A ) ) =/= 0 ) |
| 213 |
203 204 205 210 212
|
divcan5rd |
|- ( ph -> ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) / ( ( 2 x. ( sin ` ( A / 2 ) ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) |
| 214 |
194 202 213
|
3eqtrd |
|- ( ph -> ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) x. ( cos ` ( ( 1 / 2 ) x. A ) ) ) / ( sin ` A ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) |
| 215 |
154 186 214
|
3eqtrd |
|- ( ph -> ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) |
| 216 |
215
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) / _pi ) = ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) / _pi ) ) |
| 217 |
|
picn |
|- _pi e. CC |
| 218 |
217
|
a1i |
|- ( ph -> _pi e. CC ) |
| 219 |
|
pire |
|- _pi e. RR |
| 220 |
|
pipos |
|- 0 < _pi |
| 221 |
219 220
|
gt0ne0ii |
|- _pi =/= 0 |
| 222 |
221
|
a1i |
|- ( ph -> _pi =/= 0 ) |
| 223 |
203 204 218 210 222
|
divdiv32d |
|- ( ph -> ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) / _pi ) = ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / _pi ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) |
| 224 |
203 218 204 222 210
|
divdiv1d |
|- ( ph -> ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / _pi ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( _pi x. ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) ) |
| 225 |
218 53 195
|
mulassd |
|- ( ph -> ( ( _pi x. 2 ) x. ( sin ` ( A / 2 ) ) ) = ( _pi x. ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) |
| 226 |
218 53
|
mulcomd |
|- ( ph -> ( _pi x. 2 ) = ( 2 x. _pi ) ) |
| 227 |
226
|
oveq1d |
|- ( ph -> ( ( _pi x. 2 ) x. ( sin ` ( A / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( A / 2 ) ) ) ) |
| 228 |
225 227
|
eqtr3d |
|- ( ph -> ( _pi x. ( 2 x. ( sin ` ( A / 2 ) ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( A / 2 ) ) ) ) |
| 229 |
228
|
oveq2d |
|- ( ph -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( _pi x. ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( ( 2 x. _pi ) x. ( sin ` ( A / 2 ) ) ) ) ) |
| 230 |
224 229
|
eqtrd |
|- ( ph -> ( ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / _pi ) / ( 2 x. ( sin ` ( A / 2 ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( ( 2 x. _pi ) x. ( sin ` ( A / 2 ) ) ) ) ) |
| 231 |
216 223 230
|
3eqtrd |
|- ( ph -> ( ( ( 1 / 2 ) + sum_ n e. ( 1 ... N ) ( cos ` ( n x. A ) ) ) / _pi ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. A ) ) / ( ( 2 x. _pi ) x. ( sin ` ( A / 2 ) ) ) ) ) |