| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> A e. RR ) |
| 2 |
|
2re |
|- 2 e. RR |
| 3 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
| 4 |
|
remulcl |
|- ( ( 2 e. RR /\ ( A - 1 ) e. RR ) -> ( 2 x. ( A - 1 ) ) e. RR ) |
| 5 |
2 3 4
|
sylancr |
|- ( A e. RR -> ( 2 x. ( A - 1 ) ) e. RR ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( 2 x. ( A - 1 ) ) e. RR ) |
| 7 |
|
simp2 |
|- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> N e. NN0 ) |
| 8 |
|
0le2 |
|- 0 <_ 2 |
| 9 |
|
0re |
|- 0 e. RR |
| 10 |
|
letr |
|- ( ( 0 e. RR /\ 2 e. RR /\ A e. RR ) -> ( ( 0 <_ 2 /\ 2 <_ A ) -> 0 <_ A ) ) |
| 11 |
9 2 10
|
mp3an12 |
|- ( A e. RR -> ( ( 0 <_ 2 /\ 2 <_ A ) -> 0 <_ A ) ) |
| 12 |
8 11
|
mpani |
|- ( A e. RR -> ( 2 <_ A -> 0 <_ A ) ) |
| 13 |
12
|
imp |
|- ( ( A e. RR /\ 2 <_ A ) -> 0 <_ A ) |
| 14 |
|
resubcl |
|- ( ( A e. RR /\ 2 e. RR ) -> ( A - 2 ) e. RR ) |
| 15 |
2 14
|
mpan2 |
|- ( A e. RR -> ( A - 2 ) e. RR ) |
| 16 |
|
leadd2 |
|- ( ( 2 e. RR /\ A e. RR /\ ( A - 2 ) e. RR ) -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) |
| 17 |
2 16
|
mp3an1 |
|- ( ( A e. RR /\ ( A - 2 ) e. RR ) -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) |
| 18 |
15 17
|
mpdan |
|- ( A e. RR -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) |
| 19 |
18
|
biimpa |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) |
| 20 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 21 |
|
2cn |
|- 2 e. CC |
| 22 |
|
npcan |
|- ( ( A e. CC /\ 2 e. CC ) -> ( ( A - 2 ) + 2 ) = A ) |
| 23 |
20 21 22
|
sylancl |
|- ( A e. RR -> ( ( A - 2 ) + 2 ) = A ) |
| 24 |
23
|
adantr |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + 2 ) = A ) |
| 25 |
|
ax-1cn |
|- 1 e. CC |
| 26 |
|
subdi |
|- ( ( 2 e. CC /\ A e. CC /\ 1 e. CC ) -> ( 2 x. ( A - 1 ) ) = ( ( 2 x. A ) - ( 2 x. 1 ) ) ) |
| 27 |
21 25 26
|
mp3an13 |
|- ( A e. CC -> ( 2 x. ( A - 1 ) ) = ( ( 2 x. A ) - ( 2 x. 1 ) ) ) |
| 28 |
|
2times |
|- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
| 29 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 30 |
29
|
a1i |
|- ( A e. CC -> ( 2 x. 1 ) = 2 ) |
| 31 |
28 30
|
oveq12d |
|- ( A e. CC -> ( ( 2 x. A ) - ( 2 x. 1 ) ) = ( ( A + A ) - 2 ) ) |
| 32 |
|
addsub |
|- ( ( A e. CC /\ A e. CC /\ 2 e. CC ) -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) |
| 33 |
21 32
|
mp3an3 |
|- ( ( A e. CC /\ A e. CC ) -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) |
| 34 |
33
|
anidms |
|- ( A e. CC -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) |
| 35 |
27 31 34
|
3eqtrrd |
|- ( A e. CC -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) |
| 36 |
20 35
|
syl |
|- ( A e. RR -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) |
| 37 |
36
|
adantr |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) |
| 38 |
19 24 37
|
3brtr3d |
|- ( ( A e. RR /\ 2 <_ A ) -> A <_ ( 2 x. ( A - 1 ) ) ) |
| 39 |
13 38
|
jca |
|- ( ( A e. RR /\ 2 <_ A ) -> ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) |
| 40 |
39
|
3adant2 |
|- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) |
| 41 |
|
leexp1a |
|- ( ( ( A e. RR /\ ( 2 x. ( A - 1 ) ) e. RR /\ N e. NN0 ) /\ ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) -> ( A ^ N ) <_ ( ( 2 x. ( A - 1 ) ) ^ N ) ) |
| 42 |
1 6 7 40 41
|
syl31anc |
|- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( A ^ N ) <_ ( ( 2 x. ( A - 1 ) ) ^ N ) ) |
| 43 |
3
|
recnd |
|- ( A e. RR -> ( A - 1 ) e. CC ) |
| 44 |
|
mulexp |
|- ( ( 2 e. CC /\ ( A - 1 ) e. CC /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| 45 |
21 44
|
mp3an1 |
|- ( ( ( A - 1 ) e. CC /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| 46 |
43 45
|
sylan |
|- ( ( A e. RR /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| 47 |
46
|
3adant3 |
|- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| 48 |
42 47
|
breqtrd |
|- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( A ^ N ) <_ ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |