| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
|- ( A ~<_ _om -> E. f f : A -1-1-> _om ) |
| 2 |
1
|
adantl |
|- ( ( A e. B /\ A ~<_ _om ) -> E. f f : A -1-1-> _om ) |
| 3 |
|
reldom |
|- Rel ~<_ |
| 4 |
3
|
brrelex2i |
|- ( A ~<_ _om -> _om e. _V ) |
| 5 |
|
omelon2 |
|- ( _om e. _V -> _om e. On ) |
| 6 |
5
|
ad2antlr |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> _om e. On ) |
| 7 |
|
pwexg |
|- ( A e. B -> ~P A e. _V ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P A e. _V ) |
| 9 |
|
inex1g |
|- ( ~P A e. _V -> ( ~P A i^i Fin ) e. _V ) |
| 10 |
8 9
|
syl |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) e. _V ) |
| 11 |
|
difss |
|- ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) |
| 12 |
|
ssdomg |
|- ( ( ~P A i^i Fin ) e. _V -> ( ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) ) |
| 13 |
10 11 12
|
mpisyl |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) |
| 14 |
|
f1f1orn |
|- ( f : A -1-1-> _om -> f : A -1-1-onto-> ran f ) |
| 15 |
14
|
adantl |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> f : A -1-1-onto-> ran f ) |
| 16 |
|
f1opwfi |
|- ( f : A -1-1-onto-> ran f -> ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) |
| 18 |
|
f1oeng |
|- ( ( ( ~P A i^i Fin ) e. _V /\ ( x e. ( ~P A i^i Fin ) |-> ( f " x ) ) : ( ~P A i^i Fin ) -1-1-onto-> ( ~P ran f i^i Fin ) ) -> ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) ) |
| 19 |
10 17 18
|
syl2anc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) ) |
| 20 |
|
pwexg |
|- ( _om e. _V -> ~P _om e. _V ) |
| 21 |
20
|
ad2antlr |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P _om e. _V ) |
| 22 |
|
inex1g |
|- ( ~P _om e. _V -> ( ~P _om i^i Fin ) e. _V ) |
| 23 |
21 22
|
syl |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P _om i^i Fin ) e. _V ) |
| 24 |
|
f1f |
|- ( f : A -1-1-> _om -> f : A --> _om ) |
| 25 |
24
|
frnd |
|- ( f : A -1-1-> _om -> ran f C_ _om ) |
| 26 |
25
|
adantl |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ran f C_ _om ) |
| 27 |
26
|
sspwd |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ~P ran f C_ ~P _om ) |
| 28 |
27
|
ssrind |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) C_ ( ~P _om i^i Fin ) ) |
| 29 |
|
ssdomg |
|- ( ( ~P _om i^i Fin ) e. _V -> ( ( ~P ran f i^i Fin ) C_ ( ~P _om i^i Fin ) -> ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) ) ) |
| 30 |
23 28 29
|
sylc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) ) |
| 31 |
|
sneq |
|- ( f = z -> { f } = { z } ) |
| 32 |
|
pweq |
|- ( f = z -> ~P f = ~P z ) |
| 33 |
31 32
|
xpeq12d |
|- ( f = z -> ( { f } X. ~P f ) = ( { z } X. ~P z ) ) |
| 34 |
33
|
cbviunv |
|- U_ f e. x ( { f } X. ~P f ) = U_ z e. x ( { z } X. ~P z ) |
| 35 |
|
iuneq1 |
|- ( x = y -> U_ z e. x ( { z } X. ~P z ) = U_ z e. y ( { z } X. ~P z ) ) |
| 36 |
34 35
|
eqtrid |
|- ( x = y -> U_ f e. x ( { f } X. ~P f ) = U_ z e. y ( { z } X. ~P z ) ) |
| 37 |
36
|
fveq2d |
|- ( x = y -> ( card ` U_ f e. x ( { f } X. ~P f ) ) = ( card ` U_ z e. y ( { z } X. ~P z ) ) ) |
| 38 |
37
|
cbvmptv |
|- ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) = ( y e. ( ~P _om i^i Fin ) |-> ( card ` U_ z e. y ( { z } X. ~P z ) ) ) |
| 39 |
38
|
ackbij1 |
|- ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om |
| 40 |
|
f1oeng |
|- ( ( ( ~P _om i^i Fin ) e. _V /\ ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ f e. x ( { f } X. ~P f ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om ) -> ( ~P _om i^i Fin ) ~~ _om ) |
| 41 |
23 39 40
|
sylancl |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P _om i^i Fin ) ~~ _om ) |
| 42 |
|
domentr |
|- ( ( ( ~P ran f i^i Fin ) ~<_ ( ~P _om i^i Fin ) /\ ( ~P _om i^i Fin ) ~~ _om ) -> ( ~P ran f i^i Fin ) ~<_ _om ) |
| 43 |
30 41 42
|
syl2anc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P ran f i^i Fin ) ~<_ _om ) |
| 44 |
|
endomtr |
|- ( ( ( ~P A i^i Fin ) ~~ ( ~P ran f i^i Fin ) /\ ( ~P ran f i^i Fin ) ~<_ _om ) -> ( ~P A i^i Fin ) ~<_ _om ) |
| 45 |
19 43 44
|
syl2anc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ~P A i^i Fin ) ~<_ _om ) |
| 46 |
|
domtr |
|- ( ( ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) ~<_ _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) |
| 47 |
13 45 46
|
syl2anc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) |
| 48 |
|
ondomen |
|- ( ( _om e. On /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) |
| 49 |
6 47 48
|
syl2anc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) |
| 50 |
|
eqid |
|- ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) = ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) |
| 51 |
50
|
fifo |
|- ( A e. B -> ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |
| 52 |
51
|
ad2antrr |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |
| 53 |
|
fodomnum |
|- ( ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card -> ( ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) ) |
| 54 |
49 52 53
|
sylc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) |
| 55 |
|
domtr |
|- ( ( ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ _om ) -> ( fi ` A ) ~<_ _om ) |
| 56 |
54 47 55
|
syl2anc |
|- ( ( ( A e. B /\ _om e. _V ) /\ f : A -1-1-> _om ) -> ( fi ` A ) ~<_ _om ) |
| 57 |
56
|
ex |
|- ( ( A e. B /\ _om e. _V ) -> ( f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) |
| 58 |
57
|
exlimdv |
|- ( ( A e. B /\ _om e. _V ) -> ( E. f f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) |
| 59 |
4 58
|
sylan2 |
|- ( ( A e. B /\ A ~<_ _om ) -> ( E. f f : A -1-1-> _om -> ( fi ` A ) ~<_ _om ) ) |
| 60 |
2 59
|
mpd |
|- ( ( A e. B /\ A ~<_ _om ) -> ( fi ` A ) ~<_ _om ) |
| 61 |
60
|
ex |
|- ( A e. B -> ( A ~<_ _om -> ( fi ` A ) ~<_ _om ) ) |
| 62 |
|
fvex |
|- ( fi ` A ) e. _V |
| 63 |
|
ssfii |
|- ( A e. B -> A C_ ( fi ` A ) ) |
| 64 |
|
ssdomg |
|- ( ( fi ` A ) e. _V -> ( A C_ ( fi ` A ) -> A ~<_ ( fi ` A ) ) ) |
| 65 |
62 63 64
|
mpsyl |
|- ( A e. B -> A ~<_ ( fi ` A ) ) |
| 66 |
|
domtr |
|- ( ( A ~<_ ( fi ` A ) /\ ( fi ` A ) ~<_ _om ) -> A ~<_ _om ) |
| 67 |
66
|
ex |
|- ( A ~<_ ( fi ` A ) -> ( ( fi ` A ) ~<_ _om -> A ~<_ _om ) ) |
| 68 |
65 67
|
syl |
|- ( A e. B -> ( ( fi ` A ) ~<_ _om -> A ~<_ _om ) ) |
| 69 |
61 68
|
impbid |
|- ( A e. B -> ( A ~<_ _om <-> ( fi ` A ) ~<_ _om ) ) |