| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvproj.h |
|- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
| 2 |
|
fimaproj.f |
|- ( ph -> F Fn A ) |
| 3 |
|
fimaproj.g |
|- ( ph -> G Fn B ) |
| 4 |
|
fimaproj.x |
|- ( ph -> X C_ A ) |
| 5 |
|
fimaproj.y |
|- ( ph -> Y C_ B ) |
| 6 |
|
opex |
|- <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. _V |
| 7 |
|
vex |
|- x e. _V |
| 8 |
|
vex |
|- y e. _V |
| 9 |
7 8
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 10 |
9
|
fveq2d |
|- ( z = <. x , y >. -> ( F ` ( 1st ` z ) ) = ( F ` x ) ) |
| 11 |
7 8
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 12 |
11
|
fveq2d |
|- ( z = <. x , y >. -> ( G ` ( 2nd ` z ) ) = ( G ` y ) ) |
| 13 |
10 12
|
opeq12d |
|- ( z = <. x , y >. -> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. = <. ( F ` x ) , ( G ` y ) >. ) |
| 14 |
13
|
mpompt |
|- ( z e. ( A X. B ) |-> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
| 15 |
1 14
|
eqtr4i |
|- H = ( z e. ( A X. B ) |-> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) |
| 16 |
6 15
|
fnmpti |
|- H Fn ( A X. B ) |
| 17 |
|
xpss12 |
|- ( ( X C_ A /\ Y C_ B ) -> ( X X. Y ) C_ ( A X. B ) ) |
| 18 |
4 5 17
|
syl2anc |
|- ( ph -> ( X X. Y ) C_ ( A X. B ) ) |
| 19 |
|
fvelimab |
|- ( ( H Fn ( A X. B ) /\ ( X X. Y ) C_ ( A X. B ) ) -> ( c e. ( H " ( X X. Y ) ) <-> E. z e. ( X X. Y ) ( H ` z ) = c ) ) |
| 20 |
16 18 19
|
sylancr |
|- ( ph -> ( c e. ( H " ( X X. Y ) ) <-> E. z e. ( X X. Y ) ( H ` z ) = c ) ) |
| 21 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> a e. X ) |
| 22 |
|
simplr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> b e. Y ) |
| 23 |
|
opelxpi |
|- ( ( a e. X /\ b e. Y ) -> <. a , b >. e. ( X X. Y ) ) |
| 24 |
21 22 23
|
syl2anc |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> <. a , b >. e. ( X X. Y ) ) |
| 25 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( F ` a ) = ( 1st ` c ) ) |
| 26 |
|
simpr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( G ` b ) = ( 2nd ` c ) ) |
| 27 |
25 26
|
opeq12d |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> <. ( F ` a ) , ( G ` b ) >. = <. ( 1st ` c ) , ( 2nd ` c ) >. ) |
| 28 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> X C_ A ) |
| 29 |
28 21
|
sseldd |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> a e. A ) |
| 30 |
5
|
ad5antr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> Y C_ B ) |
| 31 |
30 22
|
sseldd |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> b e. B ) |
| 32 |
1 29 31
|
fvproj |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( H ` <. a , b >. ) = <. ( F ` a ) , ( G ` b ) >. ) |
| 33 |
|
1st2nd2 |
|- ( c e. ( ( F " X ) X. ( G " Y ) ) -> c = <. ( 1st ` c ) , ( 2nd ` c ) >. ) |
| 34 |
33
|
ad5antlr |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> c = <. ( 1st ` c ) , ( 2nd ` c ) >. ) |
| 35 |
27 32 34
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> ( H ` <. a , b >. ) = c ) |
| 36 |
|
fveqeq2 |
|- ( z = <. a , b >. -> ( ( H ` z ) = c <-> ( H ` <. a , b >. ) = c ) ) |
| 37 |
36
|
rspcev |
|- ( ( <. a , b >. e. ( X X. Y ) /\ ( H ` <. a , b >. ) = c ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
| 38 |
24 35 37
|
syl2anc |
|- ( ( ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) /\ b e. Y ) /\ ( G ` b ) = ( 2nd ` c ) ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
| 39 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> G Fn B ) |
| 40 |
|
fnfun |
|- ( G Fn B -> Fun G ) |
| 41 |
39 40
|
syl |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> Fun G ) |
| 42 |
|
xp2nd |
|- ( c e. ( ( F " X ) X. ( G " Y ) ) -> ( 2nd ` c ) e. ( G " Y ) ) |
| 43 |
42
|
ad3antlr |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> ( 2nd ` c ) e. ( G " Y ) ) |
| 44 |
|
fvelima |
|- ( ( Fun G /\ ( 2nd ` c ) e. ( G " Y ) ) -> E. b e. Y ( G ` b ) = ( 2nd ` c ) ) |
| 45 |
41 43 44
|
syl2anc |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> E. b e. Y ( G ` b ) = ( 2nd ` c ) ) |
| 46 |
38 45
|
r19.29a |
|- ( ( ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) /\ a e. X ) /\ ( F ` a ) = ( 1st ` c ) ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
| 47 |
2
|
adantr |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> F Fn A ) |
| 48 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 49 |
47 48
|
syl |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> Fun F ) |
| 50 |
|
xp1st |
|- ( c e. ( ( F " X ) X. ( G " Y ) ) -> ( 1st ` c ) e. ( F " X ) ) |
| 51 |
50
|
adantl |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> ( 1st ` c ) e. ( F " X ) ) |
| 52 |
|
fvelima |
|- ( ( Fun F /\ ( 1st ` c ) e. ( F " X ) ) -> E. a e. X ( F ` a ) = ( 1st ` c ) ) |
| 53 |
49 51 52
|
syl2anc |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> E. a e. X ( F ` a ) = ( 1st ` c ) ) |
| 54 |
46 53
|
r19.29a |
|- ( ( ph /\ c e. ( ( F " X ) X. ( G " Y ) ) ) -> E. z e. ( X X. Y ) ( H ` z ) = c ) |
| 55 |
|
simpr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( H ` z ) = c ) |
| 56 |
18
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( X X. Y ) C_ ( A X. B ) ) |
| 57 |
|
simplr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> z e. ( X X. Y ) ) |
| 58 |
56 57
|
sseldd |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> z e. ( A X. B ) ) |
| 59 |
15
|
fvmpt2 |
|- ( ( z e. ( A X. B ) /\ <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. _V ) -> ( H ` z ) = <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) |
| 60 |
58 6 59
|
sylancl |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( H ` z ) = <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. ) |
| 61 |
2
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> F Fn A ) |
| 62 |
4
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> X C_ A ) |
| 63 |
|
xp1st |
|- ( z e. ( X X. Y ) -> ( 1st ` z ) e. X ) |
| 64 |
57 63
|
syl |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( 1st ` z ) e. X ) |
| 65 |
|
fnfvima |
|- ( ( F Fn A /\ X C_ A /\ ( 1st ` z ) e. X ) -> ( F ` ( 1st ` z ) ) e. ( F " X ) ) |
| 66 |
61 62 64 65
|
syl3anc |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( F ` ( 1st ` z ) ) e. ( F " X ) ) |
| 67 |
3
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> G Fn B ) |
| 68 |
5
|
ad2antrr |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> Y C_ B ) |
| 69 |
|
xp2nd |
|- ( z e. ( X X. Y ) -> ( 2nd ` z ) e. Y ) |
| 70 |
57 69
|
syl |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( 2nd ` z ) e. Y ) |
| 71 |
|
fnfvima |
|- ( ( G Fn B /\ Y C_ B /\ ( 2nd ` z ) e. Y ) -> ( G ` ( 2nd ` z ) ) e. ( G " Y ) ) |
| 72 |
67 68 70 71
|
syl3anc |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( G ` ( 2nd ` z ) ) e. ( G " Y ) ) |
| 73 |
|
opelxpi |
|- ( ( ( F ` ( 1st ` z ) ) e. ( F " X ) /\ ( G ` ( 2nd ` z ) ) e. ( G " Y ) ) -> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. ( ( F " X ) X. ( G " Y ) ) ) |
| 74 |
66 72 73
|
syl2anc |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> <. ( F ` ( 1st ` z ) ) , ( G ` ( 2nd ` z ) ) >. e. ( ( F " X ) X. ( G " Y ) ) ) |
| 75 |
60 74
|
eqeltrd |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> ( H ` z ) e. ( ( F " X ) X. ( G " Y ) ) ) |
| 76 |
55 75
|
eqeltrrd |
|- ( ( ( ph /\ z e. ( X X. Y ) ) /\ ( H ` z ) = c ) -> c e. ( ( F " X ) X. ( G " Y ) ) ) |
| 77 |
76
|
r19.29an |
|- ( ( ph /\ E. z e. ( X X. Y ) ( H ` z ) = c ) -> c e. ( ( F " X ) X. ( G " Y ) ) ) |
| 78 |
54 77
|
impbida |
|- ( ph -> ( c e. ( ( F " X ) X. ( G " Y ) ) <-> E. z e. ( X X. Y ) ( H ` z ) = c ) ) |
| 79 |
20 78
|
bitr4d |
|- ( ph -> ( c e. ( H " ( X X. Y ) ) <-> c e. ( ( F " X ) X. ( G " Y ) ) ) ) |
| 80 |
79
|
eqrdv |
|- ( ph -> ( H " ( X X. Y ) ) = ( ( F " X ) X. ( G " Y ) ) ) |