| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iocopn.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
iocopn.c |
|- ( ph -> C e. RR* ) |
| 3 |
|
iocopn.b |
|- ( ph -> B e. RR ) |
| 4 |
|
iocopn.k |
|- K = ( topGen ` ran (,) ) |
| 5 |
|
iocopn.j |
|- J = ( K |`t ( A (,] B ) ) |
| 6 |
|
iocopn.alec |
|- ( ph -> A <_ C ) |
| 7 |
|
iocopn.6 |
|- ( ph -> B e. RR ) |
| 8 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 9 |
4 8
|
eqeltri |
|- K e. Top |
| 10 |
9
|
a1i |
|- ( ph -> K e. Top ) |
| 11 |
|
ovexd |
|- ( ph -> ( A (,] B ) e. _V ) |
| 12 |
|
iooretop |
|- ( C (,) +oo ) e. ( topGen ` ran (,) ) |
| 13 |
12 4
|
eleqtrri |
|- ( C (,) +oo ) e. K |
| 14 |
13
|
a1i |
|- ( ph -> ( C (,) +oo ) e. K ) |
| 15 |
|
elrestr |
|- ( ( K e. Top /\ ( A (,] B ) e. _V /\ ( C (,) +oo ) e. K ) -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( K |`t ( A (,] B ) ) ) |
| 16 |
10 11 14 15
|
syl3anc |
|- ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( K |`t ( A (,] B ) ) ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C e. RR* ) |
| 18 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> B e. RR* ) |
| 20 |
|
elinel1 |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( C (,) +oo ) ) |
| 21 |
|
elioore |
|- ( x e. ( C (,) +oo ) -> x e. RR ) |
| 22 |
20 21
|
syl |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR ) |
| 23 |
22
|
rexrd |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR* ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. RR* ) |
| 25 |
|
pnfxr |
|- +oo e. RR* |
| 26 |
25
|
a1i |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> +oo e. RR* ) |
| 27 |
20
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,) +oo ) ) |
| 28 |
|
ioogtlb |
|- ( ( C e. RR* /\ +oo e. RR* /\ x e. ( C (,) +oo ) ) -> C < x ) |
| 29 |
17 26 27 28
|
syl3anc |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C < x ) |
| 30 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> A e. RR* ) |
| 31 |
|
elinel2 |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( A (,] B ) ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( A (,] B ) ) |
| 33 |
|
iocleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A (,] B ) ) -> x <_ B ) |
| 34 |
30 19 32 33
|
syl3anc |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x <_ B ) |
| 35 |
17 19 24 29 34
|
eliocd |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,] B ) ) |
| 36 |
2
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> C e. RR* ) |
| 37 |
25
|
a1i |
|- ( ( ph /\ x e. ( C (,] B ) ) -> +oo e. RR* ) |
| 38 |
|
iocssre |
|- ( ( C e. RR* /\ B e. RR ) -> ( C (,] B ) C_ RR ) |
| 39 |
2 7 38
|
syl2anc |
|- ( ph -> ( C (,] B ) C_ RR ) |
| 40 |
39
|
sselda |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR ) |
| 41 |
18
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> B e. RR* ) |
| 42 |
|
simpr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,] B ) ) |
| 43 |
|
iocgtlb |
|- ( ( C e. RR* /\ B e. RR* /\ x e. ( C (,] B ) ) -> C < x ) |
| 44 |
36 41 42 43
|
syl3anc |
|- ( ( ph /\ x e. ( C (,] B ) ) -> C < x ) |
| 45 |
40
|
ltpnfd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x < +oo ) |
| 46 |
36 37 40 44 45
|
eliood |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,) +oo ) ) |
| 47 |
1
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A e. RR* ) |
| 48 |
40
|
rexrd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR* ) |
| 49 |
6
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A <_ C ) |
| 50 |
47 36 48 49 44
|
xrlelttrd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A < x ) |
| 51 |
|
iocleub |
|- ( ( C e. RR* /\ B e. RR* /\ x e. ( C (,] B ) ) -> x <_ B ) |
| 52 |
36 41 42 51
|
syl3anc |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x <_ B ) |
| 53 |
47 41 48 50 52
|
eliocd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( A (,] B ) ) |
| 54 |
46 53
|
elind |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) |
| 55 |
35 54
|
impbida |
|- ( ph -> ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) <-> x e. ( C (,] B ) ) ) |
| 56 |
55
|
eqrdv |
|- ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) = ( C (,] B ) ) |
| 57 |
5
|
eqcomi |
|- ( K |`t ( A (,] B ) ) = J |
| 58 |
57
|
a1i |
|- ( ph -> ( K |`t ( A (,] B ) ) = J ) |
| 59 |
16 56 58
|
3eltr3d |
|- ( ph -> ( C (,] B ) e. J ) |