Step |
Hyp |
Ref |
Expression |
1 |
|
iocopn.a |
|
2 |
|
iocopn.c |
|
3 |
|
iocopn.b |
|
4 |
|
iocopn.k |
|
5 |
|
iocopn.j |
|
6 |
|
iocopn.alec |
|
7 |
|
iocopn.6 |
|
8 |
|
retop |
|
9 |
4 8
|
eqeltri |
|
10 |
9
|
a1i |
|
11 |
|
ovexd |
|
12 |
|
iooretop |
|
13 |
12 4
|
eleqtrri |
|
14 |
13
|
a1i |
|
15 |
|
elrestr |
|
16 |
10 11 14 15
|
syl3anc |
|
17 |
2
|
adantr |
|
18 |
3
|
rexrd |
|
19 |
18
|
adantr |
|
20 |
|
elinel1 |
|
21 |
|
elioore |
|
22 |
20 21
|
syl |
|
23 |
22
|
rexrd |
|
24 |
23
|
adantl |
|
25 |
|
pnfxr |
|
26 |
25
|
a1i |
|
27 |
20
|
adantl |
|
28 |
|
ioogtlb |
|
29 |
17 26 27 28
|
syl3anc |
|
30 |
1
|
adantr |
|
31 |
|
elinel2 |
|
32 |
31
|
adantl |
|
33 |
|
iocleub |
|
34 |
30 19 32 33
|
syl3anc |
|
35 |
17 19 24 29 34
|
eliocd |
|
36 |
2
|
adantr |
|
37 |
25
|
a1i |
|
38 |
|
iocssre |
|
39 |
2 7 38
|
syl2anc |
|
40 |
39
|
sselda |
|
41 |
18
|
adantr |
|
42 |
|
simpr |
|
43 |
|
iocgtlb |
|
44 |
36 41 42 43
|
syl3anc |
|
45 |
40
|
ltpnfd |
|
46 |
36 37 40 44 45
|
eliood |
|
47 |
1
|
adantr |
|
48 |
40
|
rexrd |
|
49 |
6
|
adantr |
|
50 |
47 36 48 49 44
|
xrlelttrd |
|
51 |
|
iocleub |
|
52 |
36 41 42 51
|
syl3anc |
|
53 |
47 41 48 50 52
|
eliocd |
|
54 |
46 53
|
elind |
|
55 |
35 54
|
impbida |
|
56 |
55
|
eqrdv |
|
57 |
5
|
eqcomi |
|
58 |
57
|
a1i |
|
59 |
16 56 58
|
3eltr3d |
|