| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isosctrlem3.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
simp1l |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> A e. CC ) |
| 3 |
|
simp21 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> A =/= 0 ) |
| 4 |
|
simp1r |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> B e. CC ) |
| 5 |
2 4
|
subcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A - B ) e. CC ) |
| 6 |
|
simp23 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> A =/= B ) |
| 7 |
2 4 6
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A - B ) =/= 0 ) |
| 8 |
1
|
angneg |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( ( A - B ) e. CC /\ ( A - B ) =/= 0 ) ) -> ( -u A F -u ( A - B ) ) = ( A F ( A - B ) ) ) |
| 9 |
2 3 5 7 8
|
syl22anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( -u A F -u ( A - B ) ) = ( A F ( A - B ) ) ) |
| 10 |
2 4
|
negsubdi2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> -u ( A - B ) = ( B - A ) ) |
| 11 |
10
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( -u A F -u ( A - B ) ) = ( -u A F ( B - A ) ) ) |
| 12 |
|
1cnd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> 1 e. CC ) |
| 13 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 14 |
13
|
a1i |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> 1 =/= 0 ) |
| 15 |
4 2 3
|
divcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( B / A ) e. CC ) |
| 16 |
12 15
|
subcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( 1 - ( B / A ) ) e. CC ) |
| 17 |
6
|
necomd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> B =/= A ) |
| 18 |
4 2 3 17
|
divne1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( B / A ) =/= 1 ) |
| 19 |
18
|
necomd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> 1 =/= ( B / A ) ) |
| 20 |
12 15 19
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( 1 - ( B / A ) ) =/= 0 ) |
| 21 |
1 12 14 16 20
|
angvald |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( 1 F ( 1 - ( B / A ) ) ) = ( Im ` ( log ` ( ( 1 - ( B / A ) ) / 1 ) ) ) ) |
| 22 |
16
|
div1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( 1 - ( B / A ) ) / 1 ) = ( 1 - ( B / A ) ) ) |
| 23 |
22
|
fveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( log ` ( ( 1 - ( B / A ) ) / 1 ) ) = ( log ` ( 1 - ( B / A ) ) ) ) |
| 24 |
23
|
fveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( Im ` ( log ` ( ( 1 - ( B / A ) ) / 1 ) ) ) = ( Im ` ( log ` ( 1 - ( B / A ) ) ) ) ) |
| 25 |
4 2 3
|
absdivd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( abs ` ( B / A ) ) = ( ( abs ` B ) / ( abs ` A ) ) ) |
| 26 |
|
simp3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( abs ` A ) = ( abs ` B ) ) |
| 27 |
26
|
eqcomd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( abs ` B ) = ( abs ` A ) ) |
| 28 |
27
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( abs ` B ) / ( abs ` A ) ) = ( ( abs ` A ) / ( abs ` A ) ) ) |
| 29 |
2
|
abscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( abs ` A ) e. RR ) |
| 30 |
29
|
recnd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( abs ` A ) e. CC ) |
| 31 |
2 3
|
absne0d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( abs ` A ) =/= 0 ) |
| 32 |
30 31
|
dividd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( abs ` A ) / ( abs ` A ) ) = 1 ) |
| 33 |
25 28 32
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( abs ` ( B / A ) ) = 1 ) |
| 34 |
19
|
neneqd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> -. 1 = ( B / A ) ) |
| 35 |
|
isosctrlem2 |
|- ( ( ( B / A ) e. CC /\ ( abs ` ( B / A ) ) = 1 /\ -. 1 = ( B / A ) ) -> ( Im ` ( log ` ( 1 - ( B / A ) ) ) ) = ( Im ` ( log ` ( -u ( B / A ) / ( 1 - ( B / A ) ) ) ) ) ) |
| 36 |
15 33 34 35
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( Im ` ( log ` ( 1 - ( B / A ) ) ) ) = ( Im ` ( log ` ( -u ( B / A ) / ( 1 - ( B / A ) ) ) ) ) ) |
| 37 |
15
|
negcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> -u ( B / A ) e. CC ) |
| 38 |
|
simp22 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> B =/= 0 ) |
| 39 |
4 2 38 3
|
divne0d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( B / A ) =/= 0 ) |
| 40 |
15 39
|
negne0d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> -u ( B / A ) =/= 0 ) |
| 41 |
1 16 20 37 40
|
angvald |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( 1 - ( B / A ) ) F -u ( B / A ) ) = ( Im ` ( log ` ( -u ( B / A ) / ( 1 - ( B / A ) ) ) ) ) ) |
| 42 |
36 41
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( Im ` ( log ` ( 1 - ( B / A ) ) ) ) = ( ( 1 - ( B / A ) ) F -u ( B / A ) ) ) |
| 43 |
21 24 42
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( 1 F ( 1 - ( B / A ) ) ) = ( ( 1 - ( B / A ) ) F -u ( B / A ) ) ) |
| 44 |
2
|
mulridd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A x. 1 ) = A ) |
| 45 |
2 12 15
|
subdid |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A x. ( 1 - ( B / A ) ) ) = ( ( A x. 1 ) - ( A x. ( B / A ) ) ) ) |
| 46 |
4 2 3
|
divcan2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A x. ( B / A ) ) = B ) |
| 47 |
44 46
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( A x. 1 ) - ( A x. ( B / A ) ) ) = ( A - B ) ) |
| 48 |
45 47
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A x. ( 1 - ( B / A ) ) ) = ( A - B ) ) |
| 49 |
44 48
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( A x. 1 ) F ( A x. ( 1 - ( B / A ) ) ) ) = ( A F ( A - B ) ) ) |
| 50 |
1
|
angcan |
|- ( ( ( 1 e. CC /\ 1 =/= 0 ) /\ ( ( 1 - ( B / A ) ) e. CC /\ ( 1 - ( B / A ) ) =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. 1 ) F ( A x. ( 1 - ( B / A ) ) ) ) = ( 1 F ( 1 - ( B / A ) ) ) ) |
| 51 |
12 14 16 20 2 3 50
|
syl222anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( A x. 1 ) F ( A x. ( 1 - ( B / A ) ) ) ) = ( 1 F ( 1 - ( B / A ) ) ) ) |
| 52 |
49 51
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A F ( A - B ) ) = ( 1 F ( 1 - ( B / A ) ) ) ) |
| 53 |
2 15
|
mulneg2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A x. -u ( B / A ) ) = -u ( A x. ( B / A ) ) ) |
| 54 |
46
|
negeqd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> -u ( A x. ( B / A ) ) = -u B ) |
| 55 |
53 54
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A x. -u ( B / A ) ) = -u B ) |
| 56 |
48 55
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. -u ( B / A ) ) ) = ( ( A - B ) F -u B ) ) |
| 57 |
1
|
angcan |
|- ( ( ( ( 1 - ( B / A ) ) e. CC /\ ( 1 - ( B / A ) ) =/= 0 ) /\ ( -u ( B / A ) e. CC /\ -u ( B / A ) =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. -u ( B / A ) ) ) = ( ( 1 - ( B / A ) ) F -u ( B / A ) ) ) |
| 58 |
16 20 37 40 2 3 57
|
syl222anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. -u ( B / A ) ) ) = ( ( 1 - ( B / A ) ) F -u ( B / A ) ) ) |
| 59 |
56 58
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( ( A - B ) F -u B ) = ( ( 1 - ( B / A ) ) F -u ( B / A ) ) ) |
| 60 |
43 52 59
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( A F ( A - B ) ) = ( ( A - B ) F -u B ) ) |
| 61 |
9 11 60
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( A =/= 0 /\ B =/= 0 /\ A =/= B ) /\ ( abs ` A ) = ( abs ` B ) ) -> ( -u A F ( B - A ) ) = ( ( A - B ) F -u B ) ) |