| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isosctrlem3.1 |
|
| 2 |
|
simp1l |
|
| 3 |
|
simp21 |
|
| 4 |
|
simp1r |
|
| 5 |
2 4
|
subcld |
|
| 6 |
|
simp23 |
|
| 7 |
2 4 6
|
subne0d |
|
| 8 |
1
|
angneg |
|
| 9 |
2 3 5 7 8
|
syl22anc |
|
| 10 |
2 4
|
negsubdi2d |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
1cnd |
|
| 13 |
|
ax-1ne0 |
|
| 14 |
13
|
a1i |
|
| 15 |
4 2 3
|
divcld |
|
| 16 |
12 15
|
subcld |
|
| 17 |
6
|
necomd |
|
| 18 |
4 2 3 17
|
divne1d |
|
| 19 |
18
|
necomd |
|
| 20 |
12 15 19
|
subne0d |
|
| 21 |
1 12 14 16 20
|
angvald |
|
| 22 |
16
|
div1d |
|
| 23 |
22
|
fveq2d |
|
| 24 |
23
|
fveq2d |
|
| 25 |
4 2 3
|
absdivd |
|
| 26 |
|
simp3 |
|
| 27 |
26
|
eqcomd |
|
| 28 |
27
|
oveq1d |
|
| 29 |
2
|
abscld |
|
| 30 |
29
|
recnd |
|
| 31 |
2 3
|
absne0d |
|
| 32 |
30 31
|
dividd |
|
| 33 |
25 28 32
|
3eqtrd |
|
| 34 |
19
|
neneqd |
|
| 35 |
|
isosctrlem2 |
|
| 36 |
15 33 34 35
|
syl3anc |
|
| 37 |
15
|
negcld |
|
| 38 |
|
simp22 |
|
| 39 |
4 2 38 3
|
divne0d |
|
| 40 |
15 39
|
negne0d |
|
| 41 |
1 16 20 37 40
|
angvald |
|
| 42 |
36 41
|
eqtr4d |
|
| 43 |
21 24 42
|
3eqtrd |
|
| 44 |
2
|
mulridd |
|
| 45 |
2 12 15
|
subdid |
|
| 46 |
4 2 3
|
divcan2d |
|
| 47 |
44 46
|
oveq12d |
|
| 48 |
45 47
|
eqtrd |
|
| 49 |
44 48
|
oveq12d |
|
| 50 |
1
|
angcan |
|
| 51 |
12 14 16 20 2 3 50
|
syl222anc |
|
| 52 |
49 51
|
eqtr3d |
|
| 53 |
2 15
|
mulneg2d |
|
| 54 |
46
|
negeqd |
|
| 55 |
53 54
|
eqtrd |
|
| 56 |
48 55
|
oveq12d |
|
| 57 |
1
|
angcan |
|
| 58 |
16 20 37 40 2 3 57
|
syl222anc |
|
| 59 |
56 58
|
eqtr3d |
|
| 60 |
43 52 59
|
3eqtr4d |
|
| 61 |
9 11 60
|
3eqtr3d |
|