| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cnd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 e. CC ) |
| 2 |
|
simpl1 |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> A e. CC ) |
| 3 |
1 2
|
negsubd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 + -u A ) = ( 1 - A ) ) |
| 4 |
|
1rp |
|- 1 e. RR+ |
| 5 |
4
|
a1i |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 e. RR+ ) |
| 6 |
|
simpl3 |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> -. 1 = A ) |
| 7 |
|
simpl2 |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( abs ` A ) = 1 ) |
| 8 |
1 2 1
|
sub32d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( 1 - A ) - 1 ) = ( ( 1 - 1 ) - A ) ) |
| 9 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 10 |
9
|
oveq1i |
|- ( ( 1 - 1 ) - A ) = ( 0 - A ) |
| 11 |
|
df-neg |
|- -u A = ( 0 - A ) |
| 12 |
10 11
|
eqtr4i |
|- ( ( 1 - 1 ) - A ) = -u A |
| 13 |
8 12
|
eqtrdi |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( 1 - A ) - 1 ) = -u A ) |
| 14 |
|
1cnd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> 1 e. CC ) |
| 15 |
|
simp1 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> A e. CC ) |
| 16 |
14 15
|
subcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - A ) e. CC ) |
| 17 |
16
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) e. CC ) |
| 18 |
|
ax-1cn |
|- 1 e. CC |
| 19 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 20 |
18 19
|
mpan |
|- ( A e. CC -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 21 |
20
|
biimpd |
|- ( A e. CC -> ( ( 1 - A ) = 0 -> 1 = A ) ) |
| 22 |
21
|
con3dimp |
|- ( ( A e. CC /\ -. 1 = A ) -> -. ( 1 - A ) = 0 ) |
| 23 |
22
|
neqned |
|- ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) =/= 0 ) |
| 24 |
23
|
3adant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - A ) =/= 0 ) |
| 25 |
24
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) =/= 0 ) |
| 26 |
17 25
|
recrecd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 / ( 1 - A ) ) ) = ( 1 - A ) ) |
| 27 |
14 16 24
|
div2negd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u 1 / -u ( 1 - A ) ) = ( 1 / ( 1 - A ) ) ) |
| 28 |
27
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u 1 / -u ( 1 - A ) ) = ( 1 / ( 1 - A ) ) ) |
| 29 |
15
|
negcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u A e. CC ) |
| 30 |
29 16 24
|
cjdivd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( ( * ` -u A ) / ( * ` ( 1 - A ) ) ) ) |
| 31 |
15
|
cjnegd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` -u A ) = -u ( * ` A ) ) |
| 32 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
| 33 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 34 |
32 33
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
| 35 |
|
eqtr2 |
|- ( ( ( abs ` A ) = 1 /\ ( abs ` A ) = 0 ) -> 1 = 0 ) |
| 36 |
34 35
|
sylan2 |
|- ( ( ( abs ` A ) = 1 /\ A = 0 ) -> 1 = 0 ) |
| 37 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 38 |
|
neneq |
|- ( 1 =/= 0 -> -. 1 = 0 ) |
| 39 |
37 38
|
mp1i |
|- ( ( ( abs ` A ) = 1 /\ A = 0 ) -> -. 1 = 0 ) |
| 40 |
36 39
|
pm2.65da |
|- ( ( abs ` A ) = 1 -> -. A = 0 ) |
| 41 |
40
|
adantl |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> -. A = 0 ) |
| 42 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
| 43 |
|
oveq1 |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 44 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 45 |
43 44
|
eqtrdi |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) ^ 2 ) = 1 ) |
| 46 |
45
|
adantl |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = 1 ) |
| 47 |
|
absvalsq |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 48 |
47
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 49 |
46 48
|
eqtr3d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 1 = ( A x. ( * ` A ) ) ) |
| 50 |
49
|
3adant3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> 1 = ( A x. ( * ` A ) ) ) |
| 51 |
50
|
oveq1d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( 1 / A ) = ( ( A x. ( * ` A ) ) / A ) ) |
| 52 |
|
simp1 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> A e. CC ) |
| 53 |
52
|
cjcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
| 54 |
|
simp3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> A =/= 0 ) |
| 55 |
53 52 54
|
divcan3d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / A ) = ( * ` A ) ) |
| 56 |
51 55
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( 1 / A ) = ( * ` A ) ) |
| 57 |
42 56
|
syl3an3br |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. A = 0 ) -> ( 1 / A ) = ( * ` A ) ) |
| 58 |
41 57
|
mpd3an3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( 1 / A ) = ( * ` A ) ) |
| 59 |
58
|
eqcomd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( * ` A ) = ( 1 / A ) ) |
| 60 |
59
|
3adant3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` A ) = ( 1 / A ) ) |
| 61 |
60
|
negeqd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u ( * ` A ) = -u ( 1 / A ) ) |
| 62 |
31 61
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` -u A ) = -u ( 1 / A ) ) |
| 63 |
62
|
oveq1d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( * ` -u A ) / ( * ` ( 1 - A ) ) ) = ( -u ( 1 / A ) / ( * ` ( 1 - A ) ) ) ) |
| 64 |
|
cjsub |
|- ( ( 1 e. CC /\ A e. CC ) -> ( * ` ( 1 - A ) ) = ( ( * ` 1 ) - ( * ` A ) ) ) |
| 65 |
18 64
|
mpan |
|- ( A e. CC -> ( * ` ( 1 - A ) ) = ( ( * ` 1 ) - ( * ` A ) ) ) |
| 66 |
|
1red |
|- ( A e. CC -> 1 e. RR ) |
| 67 |
66
|
cjred |
|- ( A e. CC -> ( * ` 1 ) = 1 ) |
| 68 |
67
|
oveq1d |
|- ( A e. CC -> ( ( * ` 1 ) - ( * ` A ) ) = ( 1 - ( * ` A ) ) ) |
| 69 |
65 68
|
eqtrd |
|- ( A e. CC -> ( * ` ( 1 - A ) ) = ( 1 - ( * ` A ) ) ) |
| 70 |
69
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( * ` ( 1 - A ) ) = ( 1 - ( * ` A ) ) ) |
| 71 |
59
|
oveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( 1 - ( * ` A ) ) = ( 1 - ( 1 / A ) ) ) |
| 72 |
70 71
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( * ` ( 1 - A ) ) = ( 1 - ( 1 / A ) ) ) |
| 73 |
72
|
3adant3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( 1 - A ) ) = ( 1 - ( 1 / A ) ) ) |
| 74 |
73
|
oveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u ( 1 / A ) / ( * ` ( 1 - A ) ) ) = ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
| 75 |
30 63 74
|
3eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
| 76 |
40
|
3ad2ant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -. A = 0 ) |
| 77 |
76
|
neqned |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> A =/= 0 ) |
| 78 |
|
1cnd |
|- ( ( A e. CC /\ A =/= 0 ) -> 1 e. CC ) |
| 79 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
| 80 |
|
simpr |
|- ( ( A e. CC /\ A =/= 0 ) -> A =/= 0 ) |
| 81 |
78 79 80
|
divnegd |
|- ( ( A e. CC /\ A =/= 0 ) -> -u ( 1 / A ) = ( -u 1 / A ) ) |
| 82 |
81
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) = ( ( -u 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
| 83 |
15 77 82
|
syl2anc |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) = ( ( -u 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
| 84 |
14
|
negcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u 1 e. CC ) |
| 85 |
84 15 77
|
divcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u 1 / A ) e. CC ) |
| 86 |
15 77
|
reccld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 / A ) e. CC ) |
| 87 |
14 86
|
subcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - ( 1 / A ) ) e. CC ) |
| 88 |
16 24
|
cjne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( 1 - A ) ) =/= 0 ) |
| 89 |
73 88
|
eqnetrrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - ( 1 / A ) ) =/= 0 ) |
| 90 |
85 87 15 89 77
|
divcan5d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( A x. ( -u 1 / A ) ) / ( A x. ( 1 - ( 1 / A ) ) ) ) = ( ( -u 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
| 91 |
84 15 77
|
divcan2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( -u 1 / A ) ) = -u 1 ) |
| 92 |
15 14 86
|
subdid |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( 1 - ( 1 / A ) ) ) = ( ( A x. 1 ) - ( A x. ( 1 / A ) ) ) ) |
| 93 |
15
|
mulridd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. 1 ) = A ) |
| 94 |
15 77
|
recidd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( 1 / A ) ) = 1 ) |
| 95 |
93 94
|
oveq12d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( A x. 1 ) - ( A x. ( 1 / A ) ) ) = ( A - 1 ) ) |
| 96 |
92 95
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( 1 - ( 1 / A ) ) ) = ( A - 1 ) ) |
| 97 |
91 96
|
oveq12d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( A x. ( -u 1 / A ) ) / ( A x. ( 1 - ( 1 / A ) ) ) ) = ( -u 1 / ( A - 1 ) ) ) |
| 98 |
83 90 97
|
3eqtr2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) = ( -u 1 / ( A - 1 ) ) ) |
| 99 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
| 100 |
99
|
negnegd |
|- ( ( A e. CC /\ 1 e. CC ) -> -u -u ( A - 1 ) = ( A - 1 ) ) |
| 101 |
|
negsubdi2 |
|- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( 1 - A ) ) |
| 102 |
101
|
negeqd |
|- ( ( A e. CC /\ 1 e. CC ) -> -u -u ( A - 1 ) = -u ( 1 - A ) ) |
| 103 |
100 102
|
eqtr3d |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) = -u ( 1 - A ) ) |
| 104 |
15 14 103
|
syl2anc |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A - 1 ) = -u ( 1 - A ) ) |
| 105 |
104
|
oveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u 1 / ( A - 1 ) ) = ( -u 1 / -u ( 1 - A ) ) ) |
| 106 |
75 98 105
|
3eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u 1 / -u ( 1 - A ) ) ) |
| 107 |
106
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u 1 / -u ( 1 - A ) ) ) |
| 108 |
29 16 24
|
divcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u A / ( 1 - A ) ) e. CC ) |
| 109 |
108
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u A / ( 1 - A ) ) e. CC ) |
| 110 |
|
simpr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) |
| 111 |
109 110
|
reim0bd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u A / ( 1 - A ) ) e. RR ) |
| 112 |
111
|
cjred |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u A / ( 1 - A ) ) ) |
| 113 |
112 111
|
eqeltrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( * ` ( -u A / ( 1 - A ) ) ) e. RR ) |
| 114 |
107 113
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u 1 / -u ( 1 - A ) ) e. RR ) |
| 115 |
28 114
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 - A ) ) e. RR ) |
| 116 |
16 24
|
recne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
| 117 |
116
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
| 118 |
115 117
|
rereccld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 / ( 1 - A ) ) ) e. RR ) |
| 119 |
26 118
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) e. RR ) |
| 120 |
|
1red |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 e. RR ) |
| 121 |
119 120
|
resubcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( 1 - A ) - 1 ) e. RR ) |
| 122 |
13 121
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> -u A e. RR ) |
| 123 |
2 122
|
negrebd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> A e. RR ) |
| 124 |
123
|
absord |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| 125 |
|
eqeq1 |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = A <-> 1 = A ) ) |
| 126 |
125
|
biimpd |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = A -> 1 = A ) ) |
| 127 |
|
eqeq1 |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = -u A <-> 1 = -u A ) ) |
| 128 |
127
|
biimpd |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = -u A -> 1 = -u A ) ) |
| 129 |
126 128
|
orim12d |
|- ( ( abs ` A ) = 1 -> ( ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) -> ( 1 = A \/ 1 = -u A ) ) ) |
| 130 |
7 124 129
|
sylc |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 = A \/ 1 = -u A ) ) |
| 131 |
130
|
ord |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -. 1 = A -> 1 = -u A ) ) |
| 132 |
6 131
|
mpd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 = -u A ) |
| 133 |
132 5
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> -u A e. RR+ ) |
| 134 |
5 133
|
rpaddcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 + -u A ) e. RR+ ) |
| 135 |
3 134
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) e. RR+ ) |
| 136 |
135
|
relogcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( log ` ( 1 - A ) ) e. RR ) |
| 137 |
136
|
reim0d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) = 0 ) |
| 138 |
133 135
|
rpdivcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u A / ( 1 - A ) ) e. RR+ ) |
| 139 |
138
|
relogcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( log ` ( -u A / ( 1 - A ) ) ) e. RR ) |
| 140 |
139
|
reim0d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) = 0 ) |
| 141 |
137 140
|
eqtr4d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) = ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
| 142 |
16 24
|
logcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( 1 - A ) ) e. CC ) |
| 143 |
142
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( 1 - A ) ) e. CC ) |
| 144 |
143
|
imcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR ) |
| 145 |
144
|
recnd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. CC ) |
| 146 |
108
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( -u A / ( 1 - A ) ) e. CC ) |
| 147 |
15 77
|
negne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u A =/= 0 ) |
| 148 |
29 16 147 24
|
divne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u A / ( 1 - A ) ) =/= 0 ) |
| 149 |
148
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( -u A / ( 1 - A ) ) =/= 0 ) |
| 150 |
146 149
|
logcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( -u A / ( 1 - A ) ) ) e. CC ) |
| 151 |
150
|
imcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) e. RR ) |
| 152 |
151
|
recnd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) e. CC ) |
| 153 |
106
|
fveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( log ` ( -u 1 / -u ( 1 - A ) ) ) ) |
| 154 |
153
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( log ` ( -u 1 / -u ( 1 - A ) ) ) ) |
| 155 |
|
logcj |
|- ( ( ( -u A / ( 1 - A ) ) e. CC /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
| 156 |
108 155
|
sylan |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
| 157 |
16 24
|
reccld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 / ( 1 - A ) ) e. CC ) |
| 158 |
157 116
|
logcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) |
| 159 |
158
|
negnegd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u -u ( log ` ( 1 / ( 1 - A ) ) ) = ( log ` ( 1 / ( 1 - A ) ) ) ) |
| 160 |
|
isosctrlem1 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi ) |
| 161 |
|
logrec |
|- ( ( ( 1 - A ) e. CC /\ ( 1 - A ) =/= 0 /\ ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi ) -> ( log ` ( 1 - A ) ) = -u ( log ` ( 1 / ( 1 - A ) ) ) ) |
| 162 |
16 24 160 161
|
syl3anc |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( 1 - A ) ) = -u ( log ` ( 1 / ( 1 - A ) ) ) ) |
| 163 |
162
|
negeqd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u ( log ` ( 1 - A ) ) = -u -u ( log ` ( 1 / ( 1 - A ) ) ) ) |
| 164 |
27
|
fveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( -u 1 / -u ( 1 - A ) ) ) = ( log ` ( 1 / ( 1 - A ) ) ) ) |
| 165 |
159 163 164
|
3eqtr4rd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( -u 1 / -u ( 1 - A ) ) ) = -u ( log ` ( 1 - A ) ) ) |
| 166 |
165
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( -u 1 / -u ( 1 - A ) ) ) = -u ( log ` ( 1 - A ) ) ) |
| 167 |
154 156 166
|
3eqtr3rd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> -u ( log ` ( 1 - A ) ) = ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
| 168 |
167
|
fveq2d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` -u ( log ` ( 1 - A ) ) ) = ( Im ` ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) ) |
| 169 |
143
|
imnegd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` -u ( log ` ( 1 - A ) ) ) = -u ( Im ` ( log ` ( 1 - A ) ) ) ) |
| 170 |
150
|
imcjd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) = -u ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
| 171 |
168 169 170
|
3eqtr3d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> -u ( Im ` ( log ` ( 1 - A ) ) ) = -u ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
| 172 |
145 152 171
|
neg11d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) = ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
| 173 |
141 172
|
pm2.61dane |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) = ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |