Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → 1 ∈ ℂ ) |
2 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → 𝐴 ∈ ℂ ) |
3 |
1 2
|
negsubd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 + - 𝐴 ) = ( 1 − 𝐴 ) ) |
4 |
|
1rp |
⊢ 1 ∈ ℝ+ |
5 |
4
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → 1 ∈ ℝ+ ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ¬ 1 = 𝐴 ) |
7 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( abs ‘ 𝐴 ) = 1 ) |
8 |
1 2 1
|
sub32d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ( 1 − 𝐴 ) − 1 ) = ( ( 1 − 1 ) − 𝐴 ) ) |
9 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
10 |
9
|
oveq1i |
⊢ ( ( 1 − 1 ) − 𝐴 ) = ( 0 − 𝐴 ) |
11 |
|
df-neg |
⊢ - 𝐴 = ( 0 − 𝐴 ) |
12 |
10 11
|
eqtr4i |
⊢ ( ( 1 − 1 ) − 𝐴 ) = - 𝐴 |
13 |
8 12
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ( 1 − 𝐴 ) − 1 ) = - 𝐴 ) |
14 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → 1 ∈ ℂ ) |
15 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → 𝐴 ∈ ℂ ) |
16 |
14 15
|
subcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
18 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
19 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
20 |
18 19
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
21 |
20
|
biimpd |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − 𝐴 ) = 0 → 1 = 𝐴 ) ) |
22 |
21
|
con3dimp |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ¬ ( 1 − 𝐴 ) = 0 ) |
23 |
22
|
neqned |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 ) |
24 |
23
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − 𝐴 ) ≠ 0 ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 − 𝐴 ) ≠ 0 ) |
26 |
17 25
|
recrecd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 / ( 1 / ( 1 − 𝐴 ) ) ) = ( 1 − 𝐴 ) ) |
27 |
14 16 24
|
div2negd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - 1 / - ( 1 − 𝐴 ) ) = ( 1 / ( 1 − 𝐴 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( - 1 / - ( 1 − 𝐴 ) ) = ( 1 / ( 1 − 𝐴 ) ) ) |
29 |
15
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → - 𝐴 ∈ ℂ ) |
30 |
29 16 24
|
cjdivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = ( ( ∗ ‘ - 𝐴 ) / ( ∗ ‘ ( 1 − 𝐴 ) ) ) ) |
31 |
15
|
cjnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ - 𝐴 ) = - ( ∗ ‘ 𝐴 ) ) |
32 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
33 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
34 |
32 33
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
35 |
|
eqtr2 |
⊢ ( ( ( abs ‘ 𝐴 ) = 1 ∧ ( abs ‘ 𝐴 ) = 0 ) → 1 = 0 ) |
36 |
34 35
|
sylan2 |
⊢ ( ( ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 = 0 ) → 1 = 0 ) |
37 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
38 |
|
neneq |
⊢ ( 1 ≠ 0 → ¬ 1 = 0 ) |
39 |
37 38
|
mp1i |
⊢ ( ( ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 = 0 ) → ¬ 1 = 0 ) |
40 |
36 39
|
pm2.65da |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ¬ 𝐴 = 0 ) |
41 |
40
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ¬ 𝐴 = 0 ) |
42 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
43 |
|
oveq1 |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
44 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
45 |
43 44
|
eqtrdi |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 1 ) |
46 |
45
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 1 ) |
47 |
|
absvalsq |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
49 |
46 48
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
50 |
49
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 ≠ 0 ) → 1 = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
51 |
50
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / 𝐴 ) ) |
52 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
53 |
52
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
54 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
55 |
53 52 54
|
divcan3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
56 |
51 55
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
57 |
42 56
|
syl3an3br |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 𝐴 = 0 ) → ( 1 / 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
58 |
41 57
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 1 / 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
59 |
58
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ∗ ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
60 |
59
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
61 |
60
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → - ( ∗ ‘ 𝐴 ) = - ( 1 / 𝐴 ) ) |
62 |
31 61
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ - 𝐴 ) = - ( 1 / 𝐴 ) ) |
63 |
62
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( ∗ ‘ - 𝐴 ) / ( ∗ ‘ ( 1 − 𝐴 ) ) ) = ( - ( 1 / 𝐴 ) / ( ∗ ‘ ( 1 − 𝐴 ) ) ) ) |
64 |
|
cjsub |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( 1 − 𝐴 ) ) = ( ( ∗ ‘ 1 ) − ( ∗ ‘ 𝐴 ) ) ) |
65 |
18 64
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( 1 − 𝐴 ) ) = ( ( ∗ ‘ 1 ) − ( ∗ ‘ 𝐴 ) ) ) |
66 |
|
1red |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℝ ) |
67 |
66
|
cjred |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 1 ) = 1 ) |
68 |
67
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 1 ) − ( ∗ ‘ 𝐴 ) ) = ( 1 − ( ∗ ‘ 𝐴 ) ) ) |
69 |
65 68
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ∗ ‘ 𝐴 ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ∗ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( ∗ ‘ 𝐴 ) ) ) |
71 |
59
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 1 − ( ∗ ‘ 𝐴 ) ) = ( 1 − ( 1 / 𝐴 ) ) ) |
72 |
70 71
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ∗ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( 1 / 𝐴 ) ) ) |
73 |
72
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ ( 1 − 𝐴 ) ) = ( 1 − ( 1 / 𝐴 ) ) ) |
74 |
73
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - ( 1 / 𝐴 ) / ( ∗ ‘ ( 1 − 𝐴 ) ) ) = ( - ( 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) ) |
75 |
30 63 74
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = ( - ( 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) ) |
76 |
40
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ¬ 𝐴 = 0 ) |
77 |
76
|
neqned |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → 𝐴 ≠ 0 ) |
78 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) |
79 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
80 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
81 |
78 79 80
|
divnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → - ( 1 / 𝐴 ) = ( - 1 / 𝐴 ) ) |
82 |
81
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - ( 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) = ( ( - 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) ) |
83 |
15 77 82
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - ( 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) = ( ( - 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) ) |
84 |
14
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → - 1 ∈ ℂ ) |
85 |
84 15 77
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - 1 / 𝐴 ) ∈ ℂ ) |
86 |
15 77
|
reccld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
87 |
14 86
|
subcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − ( 1 / 𝐴 ) ) ∈ ℂ ) |
88 |
16 24
|
cjne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ ( 1 − 𝐴 ) ) ≠ 0 ) |
89 |
73 88
|
eqnetrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 − ( 1 / 𝐴 ) ) ≠ 0 ) |
90 |
85 87 15 89 77
|
divcan5d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( 𝐴 · ( - 1 / 𝐴 ) ) / ( 𝐴 · ( 1 − ( 1 / 𝐴 ) ) ) ) = ( ( - 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) ) |
91 |
84 15 77
|
divcan2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 𝐴 · ( - 1 / 𝐴 ) ) = - 1 ) |
92 |
15 14 86
|
subdid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 𝐴 · ( 1 − ( 1 / 𝐴 ) ) ) = ( ( 𝐴 · 1 ) − ( 𝐴 · ( 1 / 𝐴 ) ) ) ) |
93 |
15
|
mulid1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 𝐴 · 1 ) = 𝐴 ) |
94 |
15 77
|
recidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) |
95 |
93 94
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( 𝐴 · 1 ) − ( 𝐴 · ( 1 / 𝐴 ) ) ) = ( 𝐴 − 1 ) ) |
96 |
92 95
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 𝐴 · ( 1 − ( 1 / 𝐴 ) ) ) = ( 𝐴 − 1 ) ) |
97 |
91 96
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ( 𝐴 · ( - 1 / 𝐴 ) ) / ( 𝐴 · ( 1 − ( 1 / 𝐴 ) ) ) ) = ( - 1 / ( 𝐴 − 1 ) ) ) |
98 |
83 90 97
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - ( 1 / 𝐴 ) / ( 1 − ( 1 / 𝐴 ) ) ) = ( - 1 / ( 𝐴 − 1 ) ) ) |
99 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − 1 ) ∈ ℂ ) |
100 |
99
|
negnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → - - ( 𝐴 − 1 ) = ( 𝐴 − 1 ) ) |
101 |
|
negsubdi2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝐴 − 1 ) = ( 1 − 𝐴 ) ) |
102 |
101
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → - - ( 𝐴 − 1 ) = - ( 1 − 𝐴 ) ) |
103 |
100 102
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − 1 ) = - ( 1 − 𝐴 ) ) |
104 |
15 14 103
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 𝐴 − 1 ) = - ( 1 − 𝐴 ) ) |
105 |
104
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - 1 / ( 𝐴 − 1 ) ) = ( - 1 / - ( 1 − 𝐴 ) ) ) |
106 |
75 98 105
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = ( - 1 / - ( 1 − 𝐴 ) ) ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = ( - 1 / - ( 1 − 𝐴 ) ) ) |
108 |
29 16 24
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - 𝐴 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
109 |
108
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( - 𝐴 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
110 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) |
111 |
109 110
|
reim0bd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( - 𝐴 / ( 1 − 𝐴 ) ) ∈ ℝ ) |
112 |
111
|
cjred |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = ( - 𝐴 / ( 1 − 𝐴 ) ) ) |
113 |
112 111
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
114 |
107 113
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( - 1 / - ( 1 − 𝐴 ) ) ∈ ℝ ) |
115 |
28 114
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 / ( 1 − 𝐴 ) ) ∈ ℝ ) |
116 |
16 24
|
recne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 / ( 1 − 𝐴 ) ) ≠ 0 ) |
117 |
116
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 / ( 1 − 𝐴 ) ) ≠ 0 ) |
118 |
115 117
|
rereccld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 / ( 1 / ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
119 |
26 118
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 − 𝐴 ) ∈ ℝ ) |
120 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → 1 ∈ ℝ ) |
121 |
119 120
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ( 1 − 𝐴 ) − 1 ) ∈ ℝ ) |
122 |
13 121
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → - 𝐴 ∈ ℝ ) |
123 |
2 122
|
negrebd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → 𝐴 ∈ ℝ ) |
124 |
123
|
absord |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
125 |
|
eqeq1 |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) = 𝐴 ↔ 1 = 𝐴 ) ) |
126 |
125
|
biimpd |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) = 𝐴 → 1 = 𝐴 ) ) |
127 |
|
eqeq1 |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) = - 𝐴 ↔ 1 = - 𝐴 ) ) |
128 |
127
|
biimpd |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( abs ‘ 𝐴 ) = - 𝐴 → 1 = - 𝐴 ) ) |
129 |
126 128
|
orim12d |
⊢ ( ( abs ‘ 𝐴 ) = 1 → ( ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) → ( 1 = 𝐴 ∨ 1 = - 𝐴 ) ) ) |
130 |
7 124 129
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 = 𝐴 ∨ 1 = - 𝐴 ) ) |
131 |
130
|
ord |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ¬ 1 = 𝐴 → 1 = - 𝐴 ) ) |
132 |
6 131
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → 1 = - 𝐴 ) |
133 |
132 5
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → - 𝐴 ∈ ℝ+ ) |
134 |
5 133
|
rpaddcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 + - 𝐴 ) ∈ ℝ+ ) |
135 |
3 134
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( 1 − 𝐴 ) ∈ ℝ+ ) |
136 |
135
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( log ‘ ( 1 − 𝐴 ) ) ∈ ℝ ) |
137 |
136
|
reim0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) = 0 ) |
138 |
133 135
|
rpdivcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( - 𝐴 / ( 1 − 𝐴 ) ) ∈ ℝ+ ) |
139 |
138
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
140 |
139
|
reim0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) = 0 ) |
141 |
137 140
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) = 0 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |
142 |
16 24
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( 1 − 𝐴 ) ) ∈ ℂ ) |
143 |
142
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( 1 − 𝐴 ) ) ∈ ℂ ) |
144 |
143
|
imcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℝ ) |
145 |
144
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ∈ ℂ ) |
146 |
108
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( - 𝐴 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
147 |
15 77
|
negne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → - 𝐴 ≠ 0 ) |
148 |
29 16 147 24
|
divne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( - 𝐴 / ( 1 − 𝐴 ) ) ≠ 0 ) |
149 |
148
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( - 𝐴 / ( 1 − 𝐴 ) ) ≠ 0 ) |
150 |
146 149
|
logcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ∈ ℂ ) |
151 |
150
|
imcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ∈ ℝ ) |
152 |
151
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ∈ ℂ ) |
153 |
106
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) = ( log ‘ ( - 1 / - ( 1 − 𝐴 ) ) ) ) |
154 |
153
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) = ( log ‘ ( - 1 / - ( 1 − 𝐴 ) ) ) ) |
155 |
|
logcj |
⊢ ( ( ( - 𝐴 / ( 1 − 𝐴 ) ) ∈ ℂ ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |
156 |
108 155
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( ∗ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) = ( ∗ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |
157 |
16 24
|
reccld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( 1 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
158 |
157 116
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) ∈ ℂ ) |
159 |
158
|
negnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → - - ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) = ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) ) |
160 |
|
isosctrlem1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π ) |
161 |
|
logrec |
⊢ ( ( ( 1 − 𝐴 ) ∈ ℂ ∧ ( 1 − 𝐴 ) ≠ 0 ∧ ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ≠ π ) → ( log ‘ ( 1 − 𝐴 ) ) = - ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) ) |
162 |
16 24 160 161
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( 1 − 𝐴 ) ) = - ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) ) |
163 |
162
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → - ( log ‘ ( 1 − 𝐴 ) ) = - - ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) ) |
164 |
27
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( - 1 / - ( 1 − 𝐴 ) ) ) = ( log ‘ ( 1 / ( 1 − 𝐴 ) ) ) ) |
165 |
159 163 164
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( log ‘ ( - 1 / - ( 1 − 𝐴 ) ) ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |
166 |
165
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( log ‘ ( - 1 / - ( 1 − 𝐴 ) ) ) = - ( log ‘ ( 1 − 𝐴 ) ) ) |
167 |
154 156 166
|
3eqtr3rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → - ( log ‘ ( 1 − 𝐴 ) ) = ( ∗ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |
168 |
167
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ - ( log ‘ ( 1 − 𝐴 ) ) ) = ( ℑ ‘ ( ∗ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) ) |
169 |
143
|
imnegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ - ( log ‘ ( 1 − 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) ) |
170 |
150
|
imcjd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ ( ∗ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) = - ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |
171 |
168 169 170
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → - ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |
172 |
145 152 171
|
neg11d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) ∧ ( ℑ ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ≠ 0 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |
173 |
141 172
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) = 1 ∧ ¬ 1 = 𝐴 ) → ( ℑ ‘ ( log ‘ ( 1 − 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ ( - 𝐴 / ( 1 − 𝐴 ) ) ) ) ) |