Metamath Proof Explorer


Theorem npomex

Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P. is an infinite set, the negation of Infinity implies that P. , and hence RR , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq and nsmallnq ). (Contributed by Mario Carneiro, 11-May-2013) (Revised by Mario Carneiro, 16-Nov-2014) (New usage is discouraged.)

Ref Expression
Assertion npomex
|- ( A e. P. -> _om e. _V )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. P. -> A e. _V )
2 prnmax
 |-  ( ( A e. P. /\ x e. A ) -> E. y e. A x 
3 2 ralrimiva
 |-  ( A e. P. -> A. x e. A E. y e. A x 
4 prpssnq
 |-  ( A e. P. -> A C. Q. )
5 4 pssssd
 |-  ( A e. P. -> A C_ Q. )
6 ltsonq
 |-  
7 soss
 |-  ( A C_ Q. -> (  
8 5 6 7 mpisyl
 |-  ( A e. P. -> 
9 8 adantr
 |-  ( ( A e. P. /\ A e. Fin ) -> 
10 simpr
 |-  ( ( A e. P. /\ A e. Fin ) -> A e. Fin )
11 prn0
 |-  ( A e. P. -> A =/= (/) )
12 11 adantr
 |-  ( ( A e. P. /\ A e. Fin ) -> A =/= (/) )
13 fimax2g
 |-  ( (  E. x e. A A. y e. A -. x 
14 9 10 12 13 syl3anc
 |-  ( ( A e. P. /\ A e. Fin ) -> E. x e. A A. y e. A -. x 
15 ralnex
 |-  ( A. y e. A -. x  -. E. y e. A x 
16 15 rexbii
 |-  ( E. x e. A A. y e. A -. x  E. x e. A -. E. y e. A x 
17 rexnal
 |-  ( E. x e. A -. E. y e. A x  -. A. x e. A E. y e. A x 
18 16 17 bitri
 |-  ( E. x e. A A. y e. A -. x  -. A. x e. A E. y e. A x 
19 14 18 sylib
 |-  ( ( A e. P. /\ A e. Fin ) -> -. A. x e. A E. y e. A x 
20 19 ex
 |-  ( A e. P. -> ( A e. Fin -> -. A. x e. A E. y e. A x 
21 3 20 mt2d
 |-  ( A e. P. -> -. A e. Fin )
22 nelne1
 |-  ( ( A e. _V /\ -. A e. Fin ) -> _V =/= Fin )
23 1 21 22 syl2anc
 |-  ( A e. P. -> _V =/= Fin )
24 23 necomd
 |-  ( A e. P. -> Fin =/= _V )
25 fineqv
 |-  ( -. _om e. _V <-> Fin = _V )
26 25 necon1abii
 |-  ( Fin =/= _V <-> _om e. _V )
27 24 26 sylib
 |-  ( A e. P. -> _om e. _V )