| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  P  →  𝐴  ∈  V ) | 
						
							| 2 |  | prnmax | ⊢ ( ( 𝐴  ∈  P  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) | 
						
							| 3 | 2 | ralrimiva | ⊢ ( 𝐴  ∈  P  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) | 
						
							| 4 |  | prpssnq | ⊢ ( 𝐴  ∈  P  →  𝐴  ⊊  Q ) | 
						
							| 5 | 4 | pssssd | ⊢ ( 𝐴  ∈  P  →  𝐴  ⊆  Q ) | 
						
							| 6 |  | ltsonq | ⊢  <Q   Or  Q | 
						
							| 7 |  | soss | ⊢ ( 𝐴  ⊆  Q  →  (  <Q   Or  Q  →   <Q   Or  𝐴 ) ) | 
						
							| 8 | 5 6 7 | mpisyl | ⊢ ( 𝐴  ∈  P  →   <Q   Or  𝐴 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  P  ∧  𝐴  ∈  Fin )  →   <Q   Or  𝐴 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐴  ∈  P  ∧  𝐴  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 11 |  | prn0 | ⊢ ( 𝐴  ∈  P  →  𝐴  ≠  ∅ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  P  ∧  𝐴  ∈  Fin )  →  𝐴  ≠  ∅ ) | 
						
							| 13 |  | fimax2g | ⊢ ( (  <Q   Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <Q  𝑦 ) | 
						
							| 14 | 9 10 12 13 | syl3anc | ⊢ ( ( 𝐴  ∈  P  ∧  𝐴  ∈  Fin )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <Q  𝑦 ) | 
						
							| 15 |  | ralnex | ⊢ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <Q  𝑦  ↔  ¬  ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) | 
						
							| 16 | 15 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <Q  𝑦  ↔  ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) | 
						
							| 17 |  | rexnal | ⊢ ( ∃ 𝑥  ∈  𝐴 ¬  ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) | 
						
							| 18 | 16 17 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  <Q  𝑦  ↔  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) | 
						
							| 19 | 14 18 | sylib | ⊢ ( ( 𝐴  ∈  P  ∧  𝐴  ∈  Fin )  →  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝐴  ∈  P  →  ( 𝐴  ∈  Fin  →  ¬  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  <Q  𝑦 ) ) | 
						
							| 21 | 3 20 | mt2d | ⊢ ( 𝐴  ∈  P  →  ¬  𝐴  ∈  Fin ) | 
						
							| 22 |  | nelne1 | ⊢ ( ( 𝐴  ∈  V  ∧  ¬  𝐴  ∈  Fin )  →  V  ≠  Fin ) | 
						
							| 23 | 1 21 22 | syl2anc | ⊢ ( 𝐴  ∈  P  →  V  ≠  Fin ) | 
						
							| 24 | 23 | necomd | ⊢ ( 𝐴  ∈  P  →  Fin  ≠  V ) | 
						
							| 25 |  | fineqv | ⊢ ( ¬  ω  ∈  V  ↔  Fin  =  V ) | 
						
							| 26 | 25 | necon1abii | ⊢ ( Fin  ≠  V  ↔  ω  ∈  V ) | 
						
							| 27 | 24 26 | sylib | ⊢ ( 𝐴  ∈  P  →  ω  ∈  V ) |