| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|- X = ( Base ` G ) |
| 2 |
|
odcl.2 |
|- O = ( od ` G ) |
| 3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
| 5 |
|
simpl1 |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> G e. Mnd ) |
| 6 |
|
nnnn0 |
|- ( ( O ` A ) e. NN -> ( O ` A ) e. NN0 ) |
| 7 |
6
|
adantl |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN0 ) |
| 8 |
|
simpl3 |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. NN0 ) |
| 9 |
8
|
nn0red |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. RR ) |
| 10 |
|
nnrp |
|- ( ( O ` A ) e. NN -> ( O ` A ) e. RR+ ) |
| 11 |
10
|
adantl |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR+ ) |
| 12 |
9 11
|
rerpdivcld |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N / ( O ` A ) ) e. RR ) |
| 13 |
8
|
nn0ge0d |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 <_ N ) |
| 14 |
|
nnre |
|- ( ( O ` A ) e. NN -> ( O ` A ) e. RR ) |
| 15 |
14
|
adantl |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR ) |
| 16 |
|
nngt0 |
|- ( ( O ` A ) e. NN -> 0 < ( O ` A ) ) |
| 17 |
16
|
adantl |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 < ( O ` A ) ) |
| 18 |
|
divge0 |
|- ( ( ( N e. RR /\ 0 <_ N ) /\ ( ( O ` A ) e. RR /\ 0 < ( O ` A ) ) ) -> 0 <_ ( N / ( O ` A ) ) ) |
| 19 |
9 13 15 17 18
|
syl22anc |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 <_ ( N / ( O ` A ) ) ) |
| 20 |
|
flge0nn0 |
|- ( ( ( N / ( O ` A ) ) e. RR /\ 0 <_ ( N / ( O ` A ) ) ) -> ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) |
| 21 |
12 19 20
|
syl2anc |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) |
| 22 |
7 21
|
nn0mulcld |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. NN0 ) |
| 23 |
8
|
nn0zd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. ZZ ) |
| 24 |
|
zmodcl |
|- ( ( N e. ZZ /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. NN0 ) |
| 25 |
23 24
|
sylancom |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. NN0 ) |
| 26 |
|
simpl2 |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> A e. X ) |
| 27 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 28 |
1 3 27
|
mulgnn0dir |
|- ( ( G e. Mnd /\ ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. NN0 /\ ( N mod ( O ` A ) ) e. NN0 /\ A e. X ) ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 29 |
5 22 25 26 28
|
syl13anc |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 30 |
15
|
recnd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. CC ) |
| 31 |
21
|
nn0cnd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. CC ) |
| 32 |
30 31
|
mulcomd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
| 33 |
32
|
oveq1d |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) ) |
| 34 |
1 3
|
mulgnn0ass |
|- ( ( G e. Mnd /\ ( ( |_ ` ( N / ( O ` A ) ) ) e. NN0 /\ ( O ` A ) e. NN0 /\ A e. X ) ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
| 35 |
5 21 7 26 34
|
syl13anc |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
| 36 |
1 2 3 4
|
odid |
|- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
| 37 |
26 36
|
syl |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) .x. A ) = .0. ) |
| 38 |
37
|
oveq2d |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) ) |
| 39 |
1 3 4
|
mulgnn0z |
|- ( ( G e. Mnd /\ ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
| 40 |
5 21 39
|
syl2anc |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
| 41 |
38 40
|
eqtrd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = .0. ) |
| 42 |
35 41
|
eqtrd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = .0. ) |
| 43 |
33 42
|
eqtrd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = .0. ) |
| 44 |
43
|
oveq1d |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 45 |
29 44
|
eqtrd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) |
| 46 |
|
modval |
|- ( ( N e. RR /\ ( O ` A ) e. RR+ ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
| 47 |
9 11 46
|
syl2anc |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) = ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) ) |
| 49 |
22
|
nn0cnd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. CC ) |
| 50 |
8
|
nn0cnd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. CC ) |
| 51 |
49 50
|
pncan3d |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) = N ) |
| 52 |
48 51
|
eqtrd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) = N ) |
| 53 |
52
|
oveq1d |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( N .x. A ) ) |
| 54 |
1 3 5 25 26
|
mulgnn0cld |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) e. X ) |
| 55 |
1 27 4
|
mndlid |
|- ( ( G e. Mnd /\ ( ( N mod ( O ` A ) ) .x. A ) e. X ) -> ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( ( N mod ( O ` A ) ) .x. A ) ) |
| 56 |
5 54 55
|
syl2anc |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( ( N mod ( O ` A ) ) .x. A ) ) |
| 57 |
45 53 56
|
3eqtr3rd |
|- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |