Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
Assertion | odmodnn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | simpl1 | |
|
6 | nnnn0 | |
|
7 | 6 | adantl | |
8 | simpl3 | |
|
9 | 8 | nn0red | |
10 | nnrp | |
|
11 | 10 | adantl | |
12 | 9 11 | rerpdivcld | |
13 | 8 | nn0ge0d | |
14 | nnre | |
|
15 | 14 | adantl | |
16 | nngt0 | |
|
17 | 16 | adantl | |
18 | divge0 | |
|
19 | 9 13 15 17 18 | syl22anc | |
20 | flge0nn0 | |
|
21 | 12 19 20 | syl2anc | |
22 | 7 21 | nn0mulcld | |
23 | 8 | nn0zd | |
24 | zmodcl | |
|
25 | 23 24 | sylancom | |
26 | simpl2 | |
|
27 | eqid | |
|
28 | 1 3 27 | mulgnn0dir | |
29 | 5 22 25 26 28 | syl13anc | |
30 | 15 | recnd | |
31 | 21 | nn0cnd | |
32 | 30 31 | mulcomd | |
33 | 32 | oveq1d | |
34 | 1 3 | mulgnn0ass | |
35 | 5 21 7 26 34 | syl13anc | |
36 | 1 2 3 4 | odid | |
37 | 26 36 | syl | |
38 | 37 | oveq2d | |
39 | 1 3 4 | mulgnn0z | |
40 | 5 21 39 | syl2anc | |
41 | 38 40 | eqtrd | |
42 | 35 41 | eqtrd | |
43 | 33 42 | eqtrd | |
44 | 43 | oveq1d | |
45 | 29 44 | eqtrd | |
46 | modval | |
|
47 | 9 11 46 | syl2anc | |
48 | 47 | oveq2d | |
49 | 22 | nn0cnd | |
50 | 8 | nn0cnd | |
51 | 49 50 | pncan3d | |
52 | 48 51 | eqtrd | |
53 | 52 | oveq1d | |
54 | 1 3 5 25 26 | mulgnn0cld | |
55 | 1 27 4 | mndlid | |
56 | 5 54 55 | syl2anc | |
57 | 45 53 56 | 3eqtr3rd | |