| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 |  |-  ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) | 
						
							| 2 |  | 2z |  |-  2 e. ZZ | 
						
							| 3 |  | divides |  |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 || B <-> E. b e. ZZ ( b x. 2 ) = B ) ) | 
						
							| 4 | 2 3 | mpan |  |-  ( B e. ZZ -> ( 2 || B <-> E. b e. ZZ ( b x. 2 ) = B ) ) | 
						
							| 5 | 1 4 | bi2anan9 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) ) ) | 
						
							| 6 |  | reeanv |  |-  ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) ) | 
						
							| 7 |  | zsubcl |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( a - b ) e. ZZ ) | 
						
							| 8 |  | zcn |  |-  ( a e. ZZ -> a e. CC ) | 
						
							| 9 |  | zcn |  |-  ( b e. ZZ -> b e. CC ) | 
						
							| 10 |  | 2cn |  |-  2 e. CC | 
						
							| 11 |  | subdi |  |-  ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) | 
						
							| 12 | 10 11 | mp3an1 |  |-  ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) | 
						
							| 14 |  | mulcl |  |-  ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) | 
						
							| 15 | 10 14 | mpan |  |-  ( a e. CC -> ( 2 x. a ) e. CC ) | 
						
							| 16 |  | mulcl |  |-  ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) | 
						
							| 17 | 10 16 | mpan |  |-  ( b e. CC -> ( 2 x. b ) e. CC ) | 
						
							| 18 |  | ax-1cn |  |-  1 e. CC | 
						
							| 19 |  | addsub |  |-  ( ( ( 2 x. a ) e. CC /\ 1 e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) | 
						
							| 20 | 18 19 | mp3an2 |  |-  ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) | 
						
							| 21 | 15 17 20 | syl2an |  |-  ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) | 
						
							| 22 |  | mulcom |  |-  ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) = ( b x. 2 ) ) | 
						
							| 23 | 10 22 | mpan |  |-  ( b e. CC -> ( 2 x. b ) = ( b x. 2 ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( b e. CC -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) | 
						
							| 26 | 13 21 25 | 3eqtr2d |  |-  ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) | 
						
							| 27 | 8 9 26 | syl2an |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) | 
						
							| 28 |  | oveq2 |  |-  ( c = ( a - b ) -> ( 2 x. c ) = ( 2 x. ( a - b ) ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( c = ( a - b ) -> ( ( 2 x. c ) + 1 ) = ( ( 2 x. ( a - b ) ) + 1 ) ) | 
						
							| 30 | 29 | eqeq1d |  |-  ( c = ( a - b ) -> ( ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) <-> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) ) | 
						
							| 31 | 30 | rspcev |  |-  ( ( ( a - b ) e. ZZ /\ ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) | 
						
							| 32 | 7 27 31 | syl2anc |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) | 
						
							| 33 |  | oveq12 |  |-  ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) = ( A - B ) ) | 
						
							| 34 | 33 | eqeq2d |  |-  ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) <-> ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) | 
						
							| 35 | 34 | rexbidv |  |-  ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) | 
						
							| 36 | 32 35 | syl5ibcom |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) | 
						
							| 37 | 36 | rexlimivv |  |-  ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) | 
						
							| 38 | 6 37 | sylbir |  |-  ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) | 
						
							| 39 | 5 38 | biimtrdi |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ 2 || B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) | 
						
							| 40 | 39 | imp |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ 2 || B ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) | 
						
							| 41 | 40 | an4s |  |-  ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) | 
						
							| 42 |  | zsubcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) | 
						
							| 43 | 42 | ad2ant2r |  |-  ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> ( A - B ) e. ZZ ) | 
						
							| 44 |  | odd2np1 |  |-  ( ( A - B ) e. ZZ -> ( -. 2 || ( A - B ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> ( -. 2 || ( A - B ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) | 
						
							| 46 | 41 45 | mpbird |  |-  ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> -. 2 || ( A - B ) ) |