Step |
Hyp |
Ref |
Expression |
1 |
|
paddass.a |
|- A = ( Atoms ` K ) |
2 |
|
paddass.p |
|- .+ = ( +P ` K ) |
3 |
|
ianor |
|- ( -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) <-> ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) \/ -. ( Y =/= (/) /\ Z =/= (/) ) ) ) |
4 |
|
ianor |
|- ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) <-> ( -. X =/= (/) \/ -. ( Y .+ Z ) =/= (/) ) ) |
5 |
|
nne |
|- ( -. X =/= (/) <-> X = (/) ) |
6 |
|
nne |
|- ( -. ( Y .+ Z ) =/= (/) <-> ( Y .+ Z ) = (/) ) |
7 |
5 6
|
orbi12i |
|- ( ( -. X =/= (/) \/ -. ( Y .+ Z ) =/= (/) ) <-> ( X = (/) \/ ( Y .+ Z ) = (/) ) ) |
8 |
4 7
|
bitri |
|- ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) <-> ( X = (/) \/ ( Y .+ Z ) = (/) ) ) |
9 |
|
ianor |
|- ( -. ( Y =/= (/) /\ Z =/= (/) ) <-> ( -. Y =/= (/) \/ -. Z =/= (/) ) ) |
10 |
|
nne |
|- ( -. Y =/= (/) <-> Y = (/) ) |
11 |
|
nne |
|- ( -. Z =/= (/) <-> Z = (/) ) |
12 |
10 11
|
orbi12i |
|- ( ( -. Y =/= (/) \/ -. Z =/= (/) ) <-> ( Y = (/) \/ Z = (/) ) ) |
13 |
9 12
|
bitri |
|- ( -. ( Y =/= (/) /\ Z =/= (/) ) <-> ( Y = (/) \/ Z = (/) ) ) |
14 |
8 13
|
orbi12i |
|- ( ( -. ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) \/ -. ( Y =/= (/) /\ Z =/= (/) ) ) <-> ( ( X = (/) \/ ( Y .+ Z ) = (/) ) \/ ( Y = (/) \/ Z = (/) ) ) ) |
15 |
3 14
|
bitri |
|- ( -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) <-> ( ( X = (/) \/ ( Y .+ Z ) = (/) ) \/ ( Y = (/) \/ Z = (/) ) ) ) |
16 |
1 2
|
paddssat |
|- ( ( K e. HL /\ Y C_ A /\ Z C_ A ) -> ( Y .+ Z ) C_ A ) |
17 |
16
|
3adant3r1 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ Z ) C_ A ) |
18 |
1 2
|
padd02 |
|- ( ( K e. HL /\ ( Y .+ Z ) C_ A ) -> ( (/) .+ ( Y .+ Z ) ) = ( Y .+ Z ) ) |
19 |
17 18
|
syldan |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ ( Y .+ Z ) ) = ( Y .+ Z ) ) |
20 |
1 2
|
padd02 |
|- ( ( K e. HL /\ Y C_ A ) -> ( (/) .+ Y ) = Y ) |
21 |
20
|
3ad2antr2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ Y ) = Y ) |
22 |
21
|
oveq1d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( (/) .+ Y ) .+ Z ) = ( Y .+ Z ) ) |
23 |
19 22
|
eqtr4d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ ( Y .+ Z ) ) = ( ( (/) .+ Y ) .+ Z ) ) |
24 |
|
oveq1 |
|- ( X = (/) -> ( X .+ ( Y .+ Z ) ) = ( (/) .+ ( Y .+ Z ) ) ) |
25 |
|
oveq1 |
|- ( X = (/) -> ( X .+ Y ) = ( (/) .+ Y ) ) |
26 |
25
|
oveq1d |
|- ( X = (/) -> ( ( X .+ Y ) .+ Z ) = ( ( (/) .+ Y ) .+ Z ) ) |
27 |
24 26
|
eqeq12d |
|- ( X = (/) -> ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) <-> ( (/) .+ ( Y .+ Z ) ) = ( ( (/) .+ Y ) .+ Z ) ) ) |
28 |
23 27
|
syl5ibrcom |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X = (/) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
29 |
|
eqimss |
|- ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |
30 |
28 29
|
syl6 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X = (/) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
31 |
1 2
|
padd01 |
|- ( ( K e. HL /\ X C_ A ) -> ( X .+ (/) ) = X ) |
32 |
31
|
3ad2antr1 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ (/) ) = X ) |
33 |
1 2
|
sspadd1 |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> X C_ ( X .+ Y ) ) |
34 |
33
|
3adant3r3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ ( X .+ Y ) ) |
35 |
|
simpl |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. HL ) |
36 |
1 2
|
paddssat |
|- ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> ( X .+ Y ) C_ A ) |
37 |
36
|
3adant3r3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) C_ A ) |
38 |
|
simpr3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Z C_ A ) |
39 |
1 2
|
sspadd1 |
|- ( ( K e. HL /\ ( X .+ Y ) C_ A /\ Z C_ A ) -> ( X .+ Y ) C_ ( ( X .+ Y ) .+ Z ) ) |
40 |
35 37 38 39
|
syl3anc |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ Y ) C_ ( ( X .+ Y ) .+ Z ) ) |
41 |
34 40
|
sstrd |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ ( ( X .+ Y ) .+ Z ) ) |
42 |
32 41
|
eqsstrd |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ (/) ) C_ ( ( X .+ Y ) .+ Z ) ) |
43 |
|
oveq2 |
|- ( ( Y .+ Z ) = (/) -> ( X .+ ( Y .+ Z ) ) = ( X .+ (/) ) ) |
44 |
43
|
sseq1d |
|- ( ( Y .+ Z ) = (/) -> ( ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) <-> ( X .+ (/) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
45 |
42 44
|
syl5ibrcom |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y .+ Z ) = (/) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
46 |
30 45
|
jaod |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X = (/) \/ ( Y .+ Z ) = (/) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
47 |
1 2
|
padd02 |
|- ( ( K e. HL /\ Z C_ A ) -> ( (/) .+ Z ) = Z ) |
48 |
47
|
3ad2antr3 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( (/) .+ Z ) = Z ) |
49 |
48
|
oveq2d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( (/) .+ Z ) ) = ( X .+ Z ) ) |
50 |
32
|
oveq1d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ (/) ) .+ Z ) = ( X .+ Z ) ) |
51 |
49 50
|
eqtr4d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( (/) .+ Z ) ) = ( ( X .+ (/) ) .+ Z ) ) |
52 |
|
oveq1 |
|- ( Y = (/) -> ( Y .+ Z ) = ( (/) .+ Z ) ) |
53 |
52
|
oveq2d |
|- ( Y = (/) -> ( X .+ ( Y .+ Z ) ) = ( X .+ ( (/) .+ Z ) ) ) |
54 |
|
oveq2 |
|- ( Y = (/) -> ( X .+ Y ) = ( X .+ (/) ) ) |
55 |
54
|
oveq1d |
|- ( Y = (/) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ (/) ) .+ Z ) ) |
56 |
53 55
|
eqeq12d |
|- ( Y = (/) -> ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) <-> ( X .+ ( (/) .+ Z ) ) = ( ( X .+ (/) ) .+ Z ) ) ) |
57 |
51 56
|
syl5ibrcom |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y = (/) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
58 |
1 2
|
padd01 |
|- ( ( K e. HL /\ Y C_ A ) -> ( Y .+ (/) ) = Y ) |
59 |
58
|
3ad2antr2 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Y .+ (/) ) = Y ) |
60 |
59
|
oveq2d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ (/) ) ) = ( X .+ Y ) ) |
61 |
1 2
|
padd01 |
|- ( ( K e. HL /\ ( X .+ Y ) C_ A ) -> ( ( X .+ Y ) .+ (/) ) = ( X .+ Y ) ) |
62 |
37 61
|
syldan |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) .+ (/) ) = ( X .+ Y ) ) |
63 |
60 62
|
eqtr4d |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( X .+ ( Y .+ (/) ) ) = ( ( X .+ Y ) .+ (/) ) ) |
64 |
|
oveq2 |
|- ( Z = (/) -> ( Y .+ Z ) = ( Y .+ (/) ) ) |
65 |
64
|
oveq2d |
|- ( Z = (/) -> ( X .+ ( Y .+ Z ) ) = ( X .+ ( Y .+ (/) ) ) ) |
66 |
|
oveq2 |
|- ( Z = (/) -> ( ( X .+ Y ) .+ Z ) = ( ( X .+ Y ) .+ (/) ) ) |
67 |
65 66
|
eqeq12d |
|- ( Z = (/) -> ( ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) <-> ( X .+ ( Y .+ (/) ) ) = ( ( X .+ Y ) .+ (/) ) ) ) |
68 |
63 67
|
syl5ibrcom |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( Z = (/) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
69 |
57 68
|
jaod |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y = (/) \/ Z = (/) ) -> ( X .+ ( Y .+ Z ) ) = ( ( X .+ Y ) .+ Z ) ) ) |
70 |
69 29
|
syl6 |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( Y = (/) \/ Z = (/) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
71 |
46 70
|
jaod |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( ( X = (/) \/ ( Y .+ Z ) = (/) ) \/ ( Y = (/) \/ Z = (/) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
72 |
15 71
|
syl5bi |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) ) |
73 |
72
|
3impia |
|- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) /\ -. ( ( X =/= (/) /\ ( Y .+ Z ) =/= (/) ) /\ ( Y =/= (/) /\ Z =/= (/) ) ) ) -> ( X .+ ( Y .+ Z ) ) C_ ( ( X .+ Y ) .+ Z ) ) |