Step |
Hyp |
Ref |
Expression |
1 |
|
paddass.a |
|
2 |
|
paddass.p |
|
3 |
|
ianor |
|
4 |
|
ianor |
|
5 |
|
nne |
|
6 |
|
nne |
|
7 |
5 6
|
orbi12i |
|
8 |
4 7
|
bitri |
|
9 |
|
ianor |
|
10 |
|
nne |
|
11 |
|
nne |
|
12 |
10 11
|
orbi12i |
|
13 |
9 12
|
bitri |
|
14 |
8 13
|
orbi12i |
|
15 |
3 14
|
bitri |
|
16 |
1 2
|
paddssat |
|
17 |
16
|
3adant3r1 |
|
18 |
1 2
|
padd02 |
|
19 |
17 18
|
syldan |
|
20 |
1 2
|
padd02 |
|
21 |
20
|
3ad2antr2 |
|
22 |
21
|
oveq1d |
|
23 |
19 22
|
eqtr4d |
|
24 |
|
oveq1 |
|
25 |
|
oveq1 |
|
26 |
25
|
oveq1d |
|
27 |
24 26
|
eqeq12d |
|
28 |
23 27
|
syl5ibrcom |
|
29 |
|
eqimss |
|
30 |
28 29
|
syl6 |
|
31 |
1 2
|
padd01 |
|
32 |
31
|
3ad2antr1 |
|
33 |
1 2
|
sspadd1 |
|
34 |
33
|
3adant3r3 |
|
35 |
|
simpl |
|
36 |
1 2
|
paddssat |
|
37 |
36
|
3adant3r3 |
|
38 |
|
simpr3 |
|
39 |
1 2
|
sspadd1 |
|
40 |
35 37 38 39
|
syl3anc |
|
41 |
34 40
|
sstrd |
|
42 |
32 41
|
eqsstrd |
|
43 |
|
oveq2 |
|
44 |
43
|
sseq1d |
|
45 |
42 44
|
syl5ibrcom |
|
46 |
30 45
|
jaod |
|
47 |
1 2
|
padd02 |
|
48 |
47
|
3ad2antr3 |
|
49 |
48
|
oveq2d |
|
50 |
32
|
oveq1d |
|
51 |
49 50
|
eqtr4d |
|
52 |
|
oveq1 |
|
53 |
52
|
oveq2d |
|
54 |
|
oveq2 |
|
55 |
54
|
oveq1d |
|
56 |
53 55
|
eqeq12d |
|
57 |
51 56
|
syl5ibrcom |
|
58 |
1 2
|
padd01 |
|
59 |
58
|
3ad2antr2 |
|
60 |
59
|
oveq2d |
|
61 |
1 2
|
padd01 |
|
62 |
37 61
|
syldan |
|
63 |
60 62
|
eqtr4d |
|
64 |
|
oveq2 |
|
65 |
64
|
oveq2d |
|
66 |
|
oveq2 |
|
67 |
65 66
|
eqeq12d |
|
68 |
63 67
|
syl5ibrcom |
|
69 |
57 68
|
jaod |
|
70 |
69 29
|
syl6 |
|
71 |
46 70
|
jaod |
|
72 |
15 71
|
syl5bi |
|
73 |
72
|
3impia |
|