| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddass.a |
|
| 2 |
|
paddass.p |
|
| 3 |
|
ianor |
|
| 4 |
|
ianor |
|
| 5 |
|
nne |
|
| 6 |
|
nne |
|
| 7 |
5 6
|
orbi12i |
|
| 8 |
4 7
|
bitri |
|
| 9 |
|
ianor |
|
| 10 |
|
nne |
|
| 11 |
|
nne |
|
| 12 |
10 11
|
orbi12i |
|
| 13 |
9 12
|
bitri |
|
| 14 |
8 13
|
orbi12i |
|
| 15 |
3 14
|
bitri |
|
| 16 |
1 2
|
paddssat |
|
| 17 |
16
|
3adant3r1 |
|
| 18 |
1 2
|
padd02 |
|
| 19 |
17 18
|
syldan |
|
| 20 |
1 2
|
padd02 |
|
| 21 |
20
|
3ad2antr2 |
|
| 22 |
21
|
oveq1d |
|
| 23 |
19 22
|
eqtr4d |
|
| 24 |
|
oveq1 |
|
| 25 |
|
oveq1 |
|
| 26 |
25
|
oveq1d |
|
| 27 |
24 26
|
eqeq12d |
|
| 28 |
23 27
|
syl5ibrcom |
|
| 29 |
|
eqimss |
|
| 30 |
28 29
|
syl6 |
|
| 31 |
1 2
|
padd01 |
|
| 32 |
31
|
3ad2antr1 |
|
| 33 |
1 2
|
sspadd1 |
|
| 34 |
33
|
3adant3r3 |
|
| 35 |
|
simpl |
|
| 36 |
1 2
|
paddssat |
|
| 37 |
36
|
3adant3r3 |
|
| 38 |
|
simpr3 |
|
| 39 |
1 2
|
sspadd1 |
|
| 40 |
35 37 38 39
|
syl3anc |
|
| 41 |
34 40
|
sstrd |
|
| 42 |
32 41
|
eqsstrd |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
sseq1d |
|
| 45 |
42 44
|
syl5ibrcom |
|
| 46 |
30 45
|
jaod |
|
| 47 |
1 2
|
padd02 |
|
| 48 |
47
|
3ad2antr3 |
|
| 49 |
48
|
oveq2d |
|
| 50 |
32
|
oveq1d |
|
| 51 |
49 50
|
eqtr4d |
|
| 52 |
|
oveq1 |
|
| 53 |
52
|
oveq2d |
|
| 54 |
|
oveq2 |
|
| 55 |
54
|
oveq1d |
|
| 56 |
53 55
|
eqeq12d |
|
| 57 |
51 56
|
syl5ibrcom |
|
| 58 |
1 2
|
padd01 |
|
| 59 |
58
|
3ad2antr2 |
|
| 60 |
59
|
oveq2d |
|
| 61 |
1 2
|
padd01 |
|
| 62 |
37 61
|
syldan |
|
| 63 |
60 62
|
eqtr4d |
|
| 64 |
|
oveq2 |
|
| 65 |
64
|
oveq2d |
|
| 66 |
|
oveq2 |
|
| 67 |
65 66
|
eqeq12d |
|
| 68 |
63 67
|
syl5ibrcom |
|
| 69 |
57 68
|
jaod |
|
| 70 |
69 29
|
syl6 |
|
| 71 |
46 70
|
jaod |
|
| 72 |
15 71
|
biimtrid |
|
| 73 |
72
|
3impia |
|