| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddass.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
paddass.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
|
ianor |
⊢ ( ¬ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ↔ ( ¬ ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∨ ¬ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ) |
| 4 |
|
ianor |
⊢ ( ¬ ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ↔ ( ¬ 𝑋 ≠ ∅ ∨ ¬ ( 𝑌 + 𝑍 ) ≠ ∅ ) ) |
| 5 |
|
nne |
⊢ ( ¬ 𝑋 ≠ ∅ ↔ 𝑋 = ∅ ) |
| 6 |
|
nne |
⊢ ( ¬ ( 𝑌 + 𝑍 ) ≠ ∅ ↔ ( 𝑌 + 𝑍 ) = ∅ ) |
| 7 |
5 6
|
orbi12i |
⊢ ( ( ¬ 𝑋 ≠ ∅ ∨ ¬ ( 𝑌 + 𝑍 ) ≠ ∅ ) ↔ ( 𝑋 = ∅ ∨ ( 𝑌 + 𝑍 ) = ∅ ) ) |
| 8 |
4 7
|
bitri |
⊢ ( ¬ ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ↔ ( 𝑋 = ∅ ∨ ( 𝑌 + 𝑍 ) = ∅ ) ) |
| 9 |
|
ianor |
⊢ ( ¬ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ↔ ( ¬ 𝑌 ≠ ∅ ∨ ¬ 𝑍 ≠ ∅ ) ) |
| 10 |
|
nne |
⊢ ( ¬ 𝑌 ≠ ∅ ↔ 𝑌 = ∅ ) |
| 11 |
|
nne |
⊢ ( ¬ 𝑍 ≠ ∅ ↔ 𝑍 = ∅ ) |
| 12 |
10 11
|
orbi12i |
⊢ ( ( ¬ 𝑌 ≠ ∅ ∨ ¬ 𝑍 ≠ ∅ ) ↔ ( 𝑌 = ∅ ∨ 𝑍 = ∅ ) ) |
| 13 |
9 12
|
bitri |
⊢ ( ¬ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ↔ ( 𝑌 = ∅ ∨ 𝑍 = ∅ ) ) |
| 14 |
8 13
|
orbi12i |
⊢ ( ( ¬ ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∨ ¬ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ↔ ( ( 𝑋 = ∅ ∨ ( 𝑌 + 𝑍 ) = ∅ ) ∨ ( 𝑌 = ∅ ∨ 𝑍 = ∅ ) ) ) |
| 15 |
3 14
|
bitri |
⊢ ( ¬ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ↔ ( ( 𝑋 = ∅ ∨ ( 𝑌 + 𝑍 ) = ∅ ) ∨ ( 𝑌 = ∅ ∨ 𝑍 = ∅ ) ) ) |
| 16 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑌 + 𝑍 ) ⊆ 𝐴 ) |
| 17 |
16
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 + 𝑍 ) ⊆ 𝐴 ) |
| 18 |
1 2
|
padd02 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 + 𝑍 ) ⊆ 𝐴 ) → ( ∅ + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + 𝑍 ) ) |
| 19 |
17 18
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ∅ + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + 𝑍 ) ) |
| 20 |
1 2
|
padd02 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ∅ + 𝑌 ) = 𝑌 ) |
| 21 |
20
|
3ad2antr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ∅ + 𝑌 ) = 𝑌 ) |
| 22 |
21
|
oveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( ∅ + 𝑌 ) + 𝑍 ) = ( 𝑌 + 𝑍 ) ) |
| 23 |
19 22
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ∅ + ( 𝑌 + 𝑍 ) ) = ( ( ∅ + 𝑌 ) + 𝑍 ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑋 = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ∅ + ( 𝑌 + 𝑍 ) ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑋 = ∅ → ( 𝑋 + 𝑌 ) = ( ∅ + 𝑌 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑋 = ∅ → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( ∅ + 𝑌 ) + 𝑍 ) ) |
| 27 |
24 26
|
eqeq12d |
⊢ ( 𝑋 = ∅ → ( ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ↔ ( ∅ + ( 𝑌 + 𝑍 ) ) = ( ( ∅ + 𝑌 ) + 𝑍 ) ) ) |
| 28 |
23 27
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 29 |
|
eqimss |
⊢ ( ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 30 |
28 29
|
syl6 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 31 |
1 2
|
padd01 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑋 + ∅ ) = 𝑋 ) |
| 32 |
31
|
3ad2antr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ∅ ) = 𝑋 ) |
| 33 |
1 2
|
sspadd1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 34 |
33
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 35 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 36 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
| 37 |
36
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
| 38 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) |
| 39 |
1 2
|
sspadd1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 40 |
35 37 38 39
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + 𝑌 ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 41 |
34 40
|
sstrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 42 |
32 41
|
eqsstrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ∅ ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 43 |
|
oveq2 |
⊢ ( ( 𝑌 + 𝑍 ) = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 + ∅ ) ) |
| 44 |
43
|
sseq1d |
⊢ ( ( 𝑌 + 𝑍 ) = ∅ → ( ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ↔ ( 𝑋 + ∅ ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 45 |
42 44
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑌 + 𝑍 ) = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 46 |
30 45
|
jaod |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 = ∅ ∨ ( 𝑌 + 𝑍 ) = ∅ ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 47 |
1 2
|
padd02 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ) → ( ∅ + 𝑍 ) = 𝑍 ) |
| 48 |
47
|
3ad2antr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ∅ + 𝑍 ) = 𝑍 ) |
| 49 |
48
|
oveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( ∅ + 𝑍 ) ) = ( 𝑋 + 𝑍 ) ) |
| 50 |
32
|
oveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + ∅ ) + 𝑍 ) = ( 𝑋 + 𝑍 ) ) |
| 51 |
49 50
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( ∅ + 𝑍 ) ) = ( ( 𝑋 + ∅ ) + 𝑍 ) ) |
| 52 |
|
oveq1 |
⊢ ( 𝑌 = ∅ → ( 𝑌 + 𝑍 ) = ( ∅ + 𝑍 ) ) |
| 53 |
52
|
oveq2d |
⊢ ( 𝑌 = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 + ( ∅ + 𝑍 ) ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑌 = ∅ → ( 𝑋 + 𝑌 ) = ( 𝑋 + ∅ ) ) |
| 55 |
54
|
oveq1d |
⊢ ( 𝑌 = ∅ → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + ∅ ) + 𝑍 ) ) |
| 56 |
53 55
|
eqeq12d |
⊢ ( 𝑌 = ∅ → ( ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ↔ ( 𝑋 + ( ∅ + 𝑍 ) ) = ( ( 𝑋 + ∅ ) + 𝑍 ) ) ) |
| 57 |
51 56
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 58 |
1 2
|
padd01 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 + ∅ ) = 𝑌 ) |
| 59 |
58
|
3ad2antr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 + ∅ ) = 𝑌 ) |
| 60 |
59
|
oveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + ∅ ) ) = ( 𝑋 + 𝑌 ) ) |
| 61 |
1 2
|
padd01 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) → ( ( 𝑋 + 𝑌 ) + ∅ ) = ( 𝑋 + 𝑌 ) ) |
| 62 |
37 61
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ∅ ) = ( 𝑋 + 𝑌 ) ) |
| 63 |
60 62
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + ∅ ) ) = ( ( 𝑋 + 𝑌 ) + ∅ ) ) |
| 64 |
|
oveq2 |
⊢ ( 𝑍 = ∅ → ( 𝑌 + 𝑍 ) = ( 𝑌 + ∅ ) ) |
| 65 |
64
|
oveq2d |
⊢ ( 𝑍 = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 + ( 𝑌 + ∅ ) ) ) |
| 66 |
|
oveq2 |
⊢ ( 𝑍 = ∅ → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑋 + 𝑌 ) + ∅ ) ) |
| 67 |
65 66
|
eqeq12d |
⊢ ( 𝑍 = ∅ → ( ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ↔ ( 𝑋 + ( 𝑌 + ∅ ) ) = ( ( 𝑋 + 𝑌 ) + ∅ ) ) ) |
| 68 |
63 67
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 = ∅ → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 69 |
57 68
|
jaod |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑌 = ∅ ∨ 𝑍 = ∅ ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 70 |
69 29
|
syl6 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑌 = ∅ ∨ 𝑍 = ∅ ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 71 |
46 70
|
jaod |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( ( 𝑋 = ∅ ∨ ( 𝑌 + 𝑍 ) = ∅ ) ∨ ( 𝑌 = ∅ ∨ 𝑍 = ∅ ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 72 |
15 71
|
biimtrid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ¬ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) ) |
| 73 |
72
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ¬ ( ( 𝑋 ≠ ∅ ∧ ( 𝑌 + 𝑍 ) ≠ ∅ ) ∧ ( 𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅ ) ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |