| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 |  | pntlem1.m |  |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) | 
						
							| 17 |  | pntlem1.n |  |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 18 |  | pntlem1.U |  |-  ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) | 
						
							| 19 |  | pntlem1.K |  |-  ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 20 |  | pntlem1.o |  |-  O = ( ( ( |_ ` ( Z / ( K ^ ( J + 1 ) ) ) ) + 1 ) ... ( |_ ` ( Z / ( K ^ J ) ) ) ) | 
						
							| 21 |  | breq2 |  |-  ( z = x -> ( y < z <-> y < x ) ) | 
						
							| 22 |  | oveq2 |  |-  ( z = x -> ( ( 1 + ( L x. E ) ) x. z ) = ( ( 1 + ( L x. E ) ) x. x ) ) | 
						
							| 23 | 22 | breq1d |  |-  ( z = x -> ( ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) <-> ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) ) | 
						
							| 24 | 21 23 | anbi12d |  |-  ( z = x -> ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) <-> ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) ) ) | 
						
							| 25 |  | id |  |-  ( z = x -> z = x ) | 
						
							| 26 | 25 22 | oveq12d |  |-  ( z = x -> ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) = ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ) | 
						
							| 27 | 26 | raleqdv |  |-  ( z = x -> ( A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E <-> A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 28 | 24 27 | anbi12d |  |-  ( z = x -> ( ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) | 
						
							| 29 | 28 | cbvrexvw |  |-  ( E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> E. x e. RR+ ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 30 |  | breq1 |  |-  ( y = ( K ^ J ) -> ( y < x <-> ( K ^ J ) < x ) ) | 
						
							| 31 |  | oveq2 |  |-  ( y = ( K ^ J ) -> ( K x. y ) = ( K x. ( K ^ J ) ) ) | 
						
							| 32 | 31 | breq2d |  |-  ( y = ( K ^ J ) -> ( ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) <-> ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) ) | 
						
							| 33 | 30 32 | anbi12d |  |-  ( y = ( K ^ J ) -> ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) <-> ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) ) ) | 
						
							| 34 | 33 | anbi1d |  |-  ( y = ( K ^ J ) -> ( ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) | 
						
							| 35 | 34 | rexbidv |  |-  ( y = ( K ^ J ) -> ( E. x e. RR+ ( ( y < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. y ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> E. x e. RR+ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) | 
						
							| 36 | 29 35 | bitrid |  |-  ( y = ( K ^ J ) -> ( E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) <-> E. x e. RR+ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) | 
						
							| 37 | 19 | adantr |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 39 | 38 | simp2d |  |-  ( ph -> K e. RR+ ) | 
						
							| 40 |  | elfzoelz |  |-  ( J e. ( M ..^ N ) -> J e. ZZ ) | 
						
							| 41 |  | rpexpcl |  |-  ( ( K e. RR+ /\ J e. ZZ ) -> ( K ^ J ) e. RR+ ) | 
						
							| 42 | 39 40 41 | syl2an |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> ( K ^ J ) e. RR+ ) | 
						
							| 43 | 42 | rpred |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> ( K ^ J ) e. RR ) | 
						
							| 44 |  | elfzofz |  |-  ( J e. ( M ..^ N ) -> J e. ( M ... N ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | pntlemh |  |-  ( ( ph /\ J e. ( M ... N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) ) | 
						
							| 46 | 44 45 | sylan2 |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> ( X < ( K ^ J ) /\ ( K ^ J ) <_ ( sqrt ` Z ) ) ) | 
						
							| 47 | 46 | simpld |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> X < ( K ^ J ) ) | 
						
							| 48 | 12 | simpld |  |-  ( ph -> X e. RR+ ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> X e. RR+ ) | 
						
							| 50 |  | rpxr |  |-  ( X e. RR+ -> X e. RR* ) | 
						
							| 51 |  | elioopnf |  |-  ( X e. RR* -> ( ( K ^ J ) e. ( X (,) +oo ) <-> ( ( K ^ J ) e. RR /\ X < ( K ^ J ) ) ) ) | 
						
							| 52 | 49 50 51 | 3syl |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> ( ( K ^ J ) e. ( X (,) +oo ) <-> ( ( K ^ J ) e. RR /\ X < ( K ^ J ) ) ) ) | 
						
							| 53 | 43 47 52 | mpbir2and |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> ( K ^ J ) e. ( X (,) +oo ) ) | 
						
							| 54 | 36 37 53 | rspcdva |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> E. x e. RR+ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 55 | 2 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> A e. RR+ ) | 
						
							| 56 | 3 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> B e. RR+ ) | 
						
							| 57 | 4 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> L e. ( 0 (,) 1 ) ) | 
						
							| 58 | 7 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> U e. RR+ ) | 
						
							| 59 | 8 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> U <_ A ) | 
						
							| 60 | 11 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 61 | 12 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 62 | 13 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> C e. RR+ ) | 
						
							| 63 | 15 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> Z e. ( W [,) +oo ) ) | 
						
							| 64 | 18 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) | 
						
							| 65 | 19 | ad2antrr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 66 |  | simprl |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> x e. RR+ ) | 
						
							| 67 |  | simprr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 68 |  | simplr |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> J e. ( M ..^ N ) ) | 
						
							| 69 |  | eqid |  |-  ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. x ) ) ) + 1 ) ... ( |_ ` ( Z / x ) ) ) = ( ( ( |_ ` ( Z / ( ( 1 + ( L x. E ) ) x. x ) ) ) + 1 ) ... ( |_ ` ( Z / x ) ) ) | 
						
							| 70 | 1 55 56 57 5 6 58 59 9 10 60 61 62 14 63 16 17 64 65 20 66 67 68 69 | pntlemj |  |-  ( ( ( ph /\ J e. ( M ..^ N ) ) /\ ( x e. RR+ /\ ( ( ( K ^ J ) < x /\ ( ( 1 + ( L x. E ) ) x. x ) < ( K x. ( K ^ J ) ) ) /\ A. u e. ( x [,] ( ( 1 + ( L x. E ) ) x. x ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) ) -> ( ( U - E ) x. ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) <_ sum_ n e. O ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) | 
						
							| 71 | 54 70 | rexlimddv |  |-  ( ( ph /\ J e. ( M ..^ N ) ) -> ( ( U - E ) x. ( ( ( L x. E ) / 8 ) x. ( log ` Z ) ) ) <_ sum_ n e. O ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) |